Pool Boiling Heat Transfer on a Micro-Structured Copper Oxide Surface with Varying Wettability
Pulak Sen
National Institute of Technology Agartala, Department of Mechanical Engineering, Jirania, 799046 Tripura, India
Search for more papers by this authorSanjib Kalita
National Institute of Technology Arunachal Pradesh, Department of Mechanical Engineering, Jote, 791113 Arunachal Pradesh, India
Search for more papers by this authorCorresponding Author
Dipak Sen
National Institute of Technology Arunachal Pradesh, Department of Mechanical Engineering, Jote, 791113 Arunachal Pradesh, India
Correspondence: Dipak Sen ([email protected]), National Institute of Technology Arunachal Pradesh, Department of Mechanical Engineering, Jote, Arunachal Pradesh, 791113, India.Search for more papers by this authorSudev Das
National Institute of Technology Calicut, Department of Chemical Engineering, Kozhikode, 673601 Kerala, India
Search for more papers by this authorAjoy Kumar Das
National Institute of Technology Agartala, Department of Mechanical Engineering, Jirania, 799046 Tripura, India
Search for more papers by this authorPulak Sen
National Institute of Technology Agartala, Department of Mechanical Engineering, Jirania, 799046 Tripura, India
Search for more papers by this authorSanjib Kalita
National Institute of Technology Arunachal Pradesh, Department of Mechanical Engineering, Jote, 791113 Arunachal Pradesh, India
Search for more papers by this authorCorresponding Author
Dipak Sen
National Institute of Technology Arunachal Pradesh, Department of Mechanical Engineering, Jote, 791113 Arunachal Pradesh, India
Correspondence: Dipak Sen ([email protected]), National Institute of Technology Arunachal Pradesh, Department of Mechanical Engineering, Jote, Arunachal Pradesh, 791113, India.Search for more papers by this authorSudev Das
National Institute of Technology Calicut, Department of Chemical Engineering, Kozhikode, 673601 Kerala, India
Search for more papers by this authorAjoy Kumar Das
National Institute of Technology Agartala, Department of Mechanical Engineering, Jirania, 799046 Tripura, India
Search for more papers by this authorAbstract
Copper surface is modified to copper oxide surface for high heat flux electronics applications. Copper oxide surface is prepared by chemical etching using NaOH and (NH4)2S2O8. A pool boiling experiment is conducted to investigate the critical heat flux (CHF) and boiling heat transfer coefficient (BHTC). The results indicate that BHTC of all copper oxide surfaces are enhanced remarkably. Bubble dynamics are also analyzed by means of a high-speed camera. Bubble visualization demonstrates that the active nucleation sites for the copper oxide surfaces are higher than the bare copper surface.
References
- 1 M. Z. S. Abad, M. Ebrahimi-Dehshali, M. A. Bijarchi, M. B. Shafii, A. Moosavi, Heat Transfer Asian Res. 2019, 48 (7), 2700–2713. DOI: https://doi.org/10.1002/htj.21498
- 2 E. Akbari, A. M. Gheitaghy, H. Saffari, S. M. Hosseinalipour, Exp. Therm. Fluid Sci. 2017, 82, 390–401. DOI: https://doi.org/10.1016/j.expthermflusci.2016.11.037
- 3 H. M. Ali, M. M. Generous, F. Ahmad, M. Irfan, Appl. Therm. Eng. 2017, 113, 1146–1151. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.127
- 4 L. Bai, L. Zhang, J. Guo, G. Lin, X. Bu, D. Wen, Appl. Therm. Eng. 2016, 104, 587–595. DOI: https://doi.org/10.1016/j.applthermaleng.2016.05.113
- 5 A. R. Betz, J. Jenkins, D. Attinger, Int. J. Heat Mass Transfer 2013, 57 (2), 733–741. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.080
- 6
V. P. Carey, Liquid Vapor Phase Change Phenomena, 3rd ed., CRC Press, Boca Raton, FL
2018.
10.1201/9780203748756 Google Scholar
- 7
W. Chen, J. Wang, Heat Transfer Asian Res.
2016, 45 (8), 758–772. DOI: https://doi.org/10.1002/htj.21188
10.1002/htj.21188 Google Scholar
- 8 D. Ciloglu, Heat Transfer Eng. 2017, 38 (10), 919–930. DOI: https://doi.org/10.1080/01457632.2016.1212571
- 9 D. Cooke, S. G. Kandlikar, Int. J. Heat Mass Transfer 2012, 55 (4), 1004–1013. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.010
- 10 A. K. Das, P. K. Das, P. Saha, Exp. Therm. Fluid Sci. 2007, 31 (8), 967–977. DOI: https://doi.org/10.1016/j.expthermflusci.2006.10.006
- 11 S. Das, D. S. Kumar, S. Bhaumik, Appl. Therm. Eng. 2016, 96, 555–567. DOI: https://doi.org/10.1016/j.applthermaleng.2015.11.117
- 12 D. Deng, W. Wan, J. Feng, Q. Huang, Y. Qin, Y. Xie, Appl. Therm. Eng. 2016, 107, 420–430. DOI: https://doi.org/10.1016/j.applthermaleng.2016.06.172
- 13 A. K. Dewangan, A. Kumar, R. Kumar, Int. J. Therm. Sci. 2016, 110, 304–313. DOI: https://doi.org/10.1016/j.ijthermalsci.2016.07.015
- 14 A. K. Dewangan, A. Kumar, R. Kumar, Exp. Therm. Fluid Sci. 2017, 85, 176–188. DOI: https://doi.org/10.1016/j.expthermflusci.2017.02.028
- 15 M. Dharmendra, S. Suresh, C. S. Kumar, Q. Yang, Appl. Therm. Eng. 2016, 99, 61–71. DOI: https://doi.org/10.1016/j.applthermaleng.2015.12.081
- 16 M. Ebrahimi-Dehshali, S. Z. Najm-Barzanji, A. Hakkaki-Fard, Appl. Therm. Eng. 2018, 135, 170–177. DOI: https://doi.org/10.1016/j.applthermaleng.2018.02.040
- 17 L. W. Fan, J. Q. Li, L. Zhang, Z. T. Yu, K. F. Cen, Appl. Therm. Eng. 2016, 109, 630–639. DOI: https://doi.org/10.1016/j.applthermaleng.2016.08.131
- 18 E. Filho, F. J. Do Nascimento, D. C. Moreira, G. Ribatski, Exp. Therm. Fluid Sci. 2018, 92, 231–242. DOI: https://doi.org/10.1016/j.expthermflusci.2017.11.025
- 19 A. M. Gheitaghy, H. Saffari, M. Mohebbi, Exp. Therm. Fluid Sci. 2016, 76, 87–97. DOI: https://doi.org/10.1016/j.expthermflusci.2016.03.011
- 20 T. Halon, B. Zajaczkowski, S. Michaie, R. Rulliere, J. Bonjour, Int. J. Therm. Sci. 2017, 121, 348–357. DOI: https://doi.org/10.1016/j.ijthermalsci.2017.07.028
- 21 T. Halon, B. Zajaczkowski, S. Michaie, R. Rulliere, J. Bonjour, Int. J. Heat Mass Transfer 2018, 116, 93–103. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.025
- 22 J. Y. Ho, K. K. Wong, K. C. Leong, Int. J. Heat Mass Transfer 2016, 99, 107–121. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.073
- 23 C. C. Hsu, P. H. Chen, Int. J. Heat Mass Transfer 2012, 55 (13–14), 3713–3719. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.003
- 24 A. Jaikumar, S. G. Kandlikar, Appl. Therm. Eng. 2015, 91, 426–433. DOI: https://doi.org/10.1016/j.applthermaleng.2015.08.043
- 25 A. Jaikumar, S. G. Kandlikar, Int. J. Heat Mass Transfer 2015, 88, 652–661. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.100
- 26 A. Jaikumar, S. G. Kandlikar, Int. J. Heat Mass Transfer 2016, 95, 795–805. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.061
- 27 H. S. Jo, S. An, H. G. Park, M. W. Kim, S. S. Al-Deyab, S. C. James, J. Choi, S. S. Yoon, Int. J. Heat Mass Transfer 2017, 107, 105–111. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.029
- 28 H. S. Jo, S. An, H. G. Park, M. W. Kim, S. S. Al-Deyab, S. C. James, J. Choi, S. S. Yoon, Chem. Eng. Sci. 2017, 171, 360–367. DOI: https://doi.org/10.1016/j.ces.2017.05.028
- 29 J. S. Kim, A. Girard, S. Jun, J. Lee, S. M. You, Int. J. Heat Mass Transfer 2018, 118, 802–811. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124
- 30 S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Int. J. Heat Mass Transfer 2007, 50 (19–20), 4105–4116. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
- 31 S. J. Kline, J. Fluids Eng. 1985, 107 (2), 153–160. DOI: https://doi.org/10.1115/1.3242449
- 32 X. Kong, Y. Zhang, J. Wei, Exp. Therm. Fluid Sci. 2018, 91, 9–19. DOI: https://doi.org/10.1016/j.expthermflusci.2017.09.021
- 33 C. M. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, S. Ndao, Int. J. Heat Mass Transfer 2015, 82, 109–116. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023
- 34 U. Kumar, S. Suresh, M. R. Thansekhar, D. Babu, Appl. Surf. Sci. 2017, 423, 509–520. DOI: https://doi.org/10.1016/j.apsusc.2017.06.135
- 35 D. Lee, B. S. Kim, H. Moon, N. Lee, S. Shin, H. H. Cho, Int. J. Heat Mass Transfer 2018, 120, 1020–1030. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.100
- 36 J. S. Lee, J. S. Lee, Int. J. Heat Mass Transfer 2016, 96, 504–512. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.044
- 37 J. S. Lee, J. S. Lee, Int. J. Multiphase Flow 2016, 84, 165–175. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2016.04.021
- 38 S. Lee, G. H. Seo, S. Lee, U. Jeong, S. J. Lee, S. J. Kim, W. Choi, Carbon 2016, 107, 607–618. DOI: https://doi.org/10.1016/j.carbon.2016.06.039
- 39 C. H. Li, R. P. Rioux, Sci. Rep. 2016, 6 (1), 1–15. DOI: https://hb.adpone.com/banners/728x90.jpg
- 40
M. Li, H. Chen, L. Xiong, X. Lu, Heat Transfer Asian Res.
2007, 36 (2), 74–84. DOI: https://doi.org/10.1002/htj.20145
10.1002/htj.20145 Google Scholar
- 41
E. Long, M. Xin, Y. Wang, Heat Transfer Asian Res.
2004, 33 (5), 307–315. DOI: https://doi.org/10.1002/htj.20017
10.1002/htj.20017 Google Scholar
- 42 M. Maracy, R. H. S. Winterton, Int. J. Heat Mass Transfer 1988, 31 (7), 1443–1449. DOI: https://doi.org/10.1016/0017-9310(88)90253-0
- 43 S. Mori, K. Okuyama, Int. J. Multiphase Flow 2009, 35 (10), 946–951. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2009.05.003
- 44 A. Nazari, S. Saedodin, Surf. Eng. 2017, 33 (10), 753–759. DOI: https://doi.org/10.1080/02670844.2016.1199187
- 45 G. Niu, J. Li, Heat Mass Transfer 2015, 51 (12), 1769–1777. DOI: https://doi.org/10.1007/s00231–015–1542–2
- 46 H. T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, Int. J. Heat Mass Transfer 2009, 52 (23–24), 5459–5471. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032
- 47 K. C. Pratik, A. Nammari, T. S. Ashton, A. L. Moore, Int. J. Heat Mass Transfer 2016, 95, 964–971. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.006
- 48 M. M. Rahman, E. Olceroglu, M. McCarthy, Langmuir 2014, 30 (37), 11225–11234. DOI: https://doi.org/10.1021/la5030923
- 49 M. Ray, S. Deb, Appl. Therm. Eng. 2016, 107, 1294–1303. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.080
- 50
M. Ray, S. Deb, S. Bhaumik, Mater. Today: Proc.
2017, 4 (9), 10002–10009. DOI: https://doi.org/10.1016/j.matpr.2017.06.310
10.1016/j.matpr.2017.06.310 Google Scholar
- 51 W. M. Rohsenow, Transf. ASME 1952, 74, 969–976.
- 52 P. R. Sahu, S. Sinha-Ray, L. A. Yarin, Int. J. Heat Mass Transfer 2015, 87, 521–535. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.009
- 53 R. M. Salimpour, A. Abdollahi, M. Afran, Exp. Therm. Fluid Sci. 2017, 88, 288–300. DOI: https://doi.org/10.1016/j.expthermflusci.2017.06.007
- 54 M. M. Sarafraz, F. Hormozi, Int. J. Therm. Sci. 2016, 100, 255–266. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.10.006
- 55 H. Seo, H. J. Chu, Y. S. Kwon, C. I. Bang, Int. J. Heat Mass Transfer 2015, 82, 490–502. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.019
- 56 B. Shen, T. Mine, N. Iwata, S. Hidaka, K. Takahashi, Y. Takata, Exp. Therm. Fluid Sci. 2020, 113, 110026. DOI: https://doi.org/10.1016/j.expthermflusci.2019.110026
- 57 C. Shen, C. Zhang, Y. Bao, X. Wang, Y. Liu, L. Ren, Int. J. Therm. Sci. 2018, 130, 47–58. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.011
- 58 B. Shi, B. Y. Wang, K. Chen, Appl. Therm. Eng. 2015, 75, 115–121. DOI: https://doi.org/10.1016/j.applthermaleng.2014.09.040
- 59 D. I. Shim, G. Choi, N. Lee, T. Kim, B. S. Kim, H. H. Cho, ACS Appl. Mater. Interfaces 2017, 9 (20), 17595–17602. DOI: https://doi.org/10.1021/acsami.7b01929
- 60
S. Shun-yu, H. Su-yi, W. Xiao-mo, Heat Transfer Asian Res.
2005, 34 (2), 78–84. DOI: https://doi.org/10.1002/htj.20049
10.1002/htj.20049 Google Scholar
- 61 H. H. Son, G. H. Seo, U. Jeong, D. Y. Shin, S. J. Kim, Int. J. Heat Mass Transfer 2017, 113, 115–128. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.055
- 62 G. Song, P. A. Davies, J. Wen, G. Xu, Y. Quan, Appl. Therm. Eng. 2018, 141, 143–152. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.068
- 63 A. Walunj, A. Sathyabhama, Appl. Therm. Eng. 2018, 128, 672–683. DOI: https://doi.org/10.1016/j.applthermaleng.2017.08.157
- 64 B. S. White, J. A. Shih, P. K. Pipe, J. Appl. Phys. 2018, 107 (11), 114302. DOI: https://doi.org/10.1063/1.3342584
- 65 G. Z. Xu, J. Qin, Appl. Therm. Eng. 2018, 131, 595–606. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.040
- 66 M. Yamada, B. Shen, T. Imamura, S. Hidaka, M. Kohno, K. Takahashi, Y. Takata, Int. J. Heat Mass Transfer 2017, 115, 753–762. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.078
- 67 S. Zhang, Y. Tang, J. Zeng, W. Yuan, J. Chen, C. Chen, Appl. Therm. Eng. 2016, 93, 1135–1144. DOI: https://doi.org/10.1016/j.applthermaleng.2015.10.044
- 68 A. Zou, S. C. Maroo, Appl. Phys. Lett. 2013, 103 (22), 221602. DOI: https://doi.org/10.1063/1.4833543
- 69 S. Kalita, P. Sen, D. Sen, S. Das, A. K. Das, B. B. Saha, Therm. Sci. Eng. Prog. 2021, 26, 101114. DOI: https://doi.org/10.1016/j.tsep.2021.101114
- 70 R. Chen, M. C. Lu, V. Srinivasan, Z. Wang, H. H. Cho, A. Majumdar, Nano Lett. 2009, 9 (2), 548–553. DOI: https://doi.org/10.1021/nl8026857
- 71 M. C. Lu, R. Chen, V. Srinivasan, V. P. Carey, A. Majumdar, Int. J. Heat Mass Transfer 2011, 54, 5359–5367. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.007
- 72 M. C. Lu, C. H. Huang, C. T. Huang, Y. C. Chen, Int. J. Therm.Sci. 2015, 91, 133–141. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.01.011
- 73 Y. T. Hsu, J. X. Li, M. C. Lu, Appl. Therm. Eng. 2018, 131, 864–873. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.067
- 74 S. Das, R. Johnsan, C. S. Sujith Kumar, A. Datta, Therm. Anal. Calorim. 2020, 144, 1073–1082. DOI: https://doi.org/10.1007/s10973-020-09503-3
- 75 R. Johnsan, S. Das, C. S. S. Kumar, Chem Eng Technol. 2021, 44 (5), 934–941. DOI: https://doi.org/10.1002/ceat.202100026