Optimization of the Forward Osmosis Process Using Aquaporin Membranes in Chromium Removal
Zohreh Naghdali
Qazvin University of Medical Sciences, Student Research Committee, Qazvin, Iran
Qazvin University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Qazvin, Iran
Search for more papers by this authorSoleyman Sahebi
Ton Duc Thang University, Department for Management of Science and Technology Development, Ho Chi Minh City, Vietnam
Ton Duc Thang University, Faculty of Environment and Labour Safety, Ho Chi Minh City, Vietnam
Search for more papers by this authorMilad Mousazadeh
Qazvin University of Medical Sciences, Student Research Committee, Qazvin, Iran
Qazvin University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Qazvin, Iran
Search for more papers by this authorCorresponding Author
Hamzeh Ali Jamali
Qazvin University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Qazvin, Iran
Qazvin University of Medical Sciences, Social Determinants on Health Promotion Research Center, Qazvin, Iran
Correspondence: Hamzeh Ali Jamali ([email protected]), Qazvin University of Medical Sciences, Student Research Committee, Qazvin, Iran.Search for more papers by this authorZohreh Naghdali
Qazvin University of Medical Sciences, Student Research Committee, Qazvin, Iran
Qazvin University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Qazvin, Iran
Search for more papers by this authorSoleyman Sahebi
Ton Duc Thang University, Department for Management of Science and Technology Development, Ho Chi Minh City, Vietnam
Ton Duc Thang University, Faculty of Environment and Labour Safety, Ho Chi Minh City, Vietnam
Search for more papers by this authorMilad Mousazadeh
Qazvin University of Medical Sciences, Student Research Committee, Qazvin, Iran
Qazvin University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Qazvin, Iran
Search for more papers by this authorCorresponding Author
Hamzeh Ali Jamali
Qazvin University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Qazvin, Iran
Qazvin University of Medical Sciences, Social Determinants on Health Promotion Research Center, Qazvin, Iran
Correspondence: Hamzeh Ali Jamali ([email protected]), Qazvin University of Medical Sciences, Student Research Committee, Qazvin, Iran.Search for more papers by this authorAbstract
Due to the lack of affordable and feasible wastewater treatment technologies, various industries in developing countries are discharging chromium (Cr) without meeting the environmental standards. Here, the aim was to employ forward osmosis (FO) using aquaporins (AQP)-based biomimetic membranes and optimize the Cr rejection through response surface methodology (RSM). The initial concentration of draw solution, feed solution, and time was selected as independent variables in order to optimize Cr rejection and water flux. A high Cr rejection efficiency and water flux were achieved under the optimal conditions. These results revealed that the FO process applying an AQP membrane beside the RSM could be considered to treat wastewaters containing heavy metals.
References
- 1 A. Ayangbenro, O. Babalola, Int. J. Environ. Res. Public Health 2017, 14 (1), 94–110. DOI: https://doi.org/10.3390/ijerph14010094
- 2 A. Pratush, A. Kumar, Z. Hu, Int. Microbiol. 2018, 21 (3), 97–106. DOI: https://doi.org/10.1007/s10123-018-0012-3
- 3 N. Ahmad, H. Sereshti, M. Mousazadeh, H. R. Nodeh, M. A. Kamboh, S. Mohamad, Mater. Chem. Phys. 2019, 226, 73–81. DOI: https://doi.org/10.1016/j.matchemphys.2019.01.002
- 4 Z. Naghdali, S. Sahebi, R. Ghanbari, M. Mousazadeh, H. A. Jamali, Environ. Health Eng. Manage. J. 2019, 6 (2), 113–120. DOI: https://doi.org/10.15171/EHEM.2019.13
- 5 C. G. Lee, S. Lee, J. A. Park, C. Park, S. J. Lee, S. B. Kim, Chemosphere 2017, 166, 203–211. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.093
- 6 J. Yu, C. Jiang, Q. Guan, P. Ning, J. Gu, Q. Chen, Chemosphere 2018, 195, 632–640. DOI: https://doi.org/10.1016/j.chemosphere.2017.12.128
- 7 V. Yogeshwaran, A. K. Priya, https://ssrn.com/abstract=3090245 (Accessed on December 22, 2017). DOI: https://doi.org/10.2139/ssrn.3090245
- 8 S. Aziri, S. Meziane, N. Berkane, Sep. Sci. Technol. 2019, in press. DOI: https://doi.org/10.1080/01496395.2019.1640250
- 9 Y. Cui, A. Masud, N. Aich, J. D. Atkinson, J. Hazard. Mater. 2019, 368, 477–486. DOI: https://doi.org/10.1016/j.jhazmat.2019.01.075
- 10 M. Barakat, Arab. J. Chem. 2011, 4 (4), 361–377. DOI: https://doi.org/10.1016/j.arabjc.2010.07.019
- 11 R. N. Bharagava, S. Mishra, Ecotoxicol. Environ. Saf. 2018, 147, 102–109. DOI: https://doi.org/10.1016/j.ecoenv.2017.08.040
- 12 T. Tatoulis, M. Michailides, A. Tekerlekopoulou, C. Akratos, S. Pavlou, D. Vayenas, Water 2018, 10 (4), 382–402. DOI: https://doi.org/10.3390/w10040382
- 13 X. Liu, J. Wu, L. Hou, J. Wang, Ann. Nucl. Energy 2020, 135, 106950. DOI: https://doi.org/10.1016/j.anucene.2019.106950
- 14 M. Mondal, M. Dutta, S. De, Sep. Purif. Technol. 2017, 188, 155–166. DOI: https://doi.org/10.1016/j.seppur.2017.07.013
- 15 Y. Huang, P. Cay-Durgun, T. Lai, P. Yu, M. L. Lind, Ind. Eng. Chem. Res. 2018, 57 (20), 7021–7029. DOI: https://doi.org/10.1021/acs.iecr.8b00205
- 16 S. Lee, Y. Kim, J. Park, H. K. Shon, S. Hong, J. Membr. Sci. 2018, 556, 238–247. DOI: https://doi.org/10.1016/j.memsci.2018.04.008
- 17 H. Luo, Q. Wang, T. C. Zhang, T. Tao, A. Zhou, L. Chen, J. Water Process Eng. 2014, 4, 212–223. DOI: https://doi.org/10.1016/j.jwpe.2014.10.006
- 18 S. Sahebi, S. Phuntsho, L. Tijing, G. Han, D. S. Han, A. Abdel-Wahab, Desalination 2017, 406, 98–108. DOI: https://doi.org/10.1016/j.desal.2016.06.001
- 19 Z. Li, R. V. Linares, S. Bucs, L. Fortunato, C. Hélix-Nielsen, J. S. Vrouwenvelder, Desalination 2017, 420, 208–215. DOI: https://doi.org/10.1016/j.desal.2017.07.015
- 20 X. Liu, J. Wu, L. Hou, J. Wang, Chemosphere 2019, 232, 87–95. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.210
- 21 X. Liu, J. Wu, J. Wang, Prog. Nucl. Energy 2019, 114, 155–63. DOI: https://doi.org/10.1016/j.pnucene.2019.03.014
- 22 S. Sahebia, M. Sheikhic, B. Ramavandid, Desalin. Water Treat. 2019, 148, 42–50. DOI: https://doi.org/10.5004/dwt.2019.23748
- 23 W. A. Suwaileh, D. J. Johnson, S. Sarp, N. Hilal, Desalination 2018, 436, 176–201. DOI: https://doi.org/10.1016/j.desal.2018.01.035
- 24 S. Bolisetty, M. Peydayesh, R. Mezzenga, Chem. Soc. Rev. 2019, 48 (2), 463–487. DOI: https://doi.org/10.1039/C8CS00493E
- 25 H. T. Madsen, N. Bajraktari, C. Hélix-Nielsen, B. V. Bruggen, E. G. Søgaard, J. Membr. Sci. 2014, 476, 469–474. DOI: https://doi.org/10.1016/j.memsci.2014.11.055
- 26 Y. Li, Z. Xu, M. Xie, B. Zhang, G. Li, W. Luo, J. Membr. Sci. 2019, Article 117436. DOI: https://doi.org/10.1016/j.memsci.2019.117436
- 27 M. S. Camilleri-Rumbau, J. L. Soler-Cabezas, K. V. Christensen, B. Norddahl, J. A. Mendoza-Roca, M. C. Vincent-Vela, Chem. Eng. J. 2019, 371, 583–592. DOI: https://doi.org/10.1016/j.cej.2019.02.029
- 28 M. Khayet, J. Sanmartino, M. Essalhi, M. García-Payo, N. Hilal, Sol. Energy 2016, 137, 290–302. DOI: https://doi.org/10.1016/j.solener.2016.07.046
- 29 H. A. Jamali, M. Moradnia, Environ. Health Eng. Manage. J. 2018, 5 (1), 15–21. DOI: https://doi.org/10.15171/EHEM.2018.03
- 30 M. M. Emamjomeh, H. A. Jamali, Z. Naghdali, M. Mousazadeh, Desalin. Water Treat. 2019, 160, 171–177. DOI: https://doi.org/10.5004/dwt.2019.24382
- 31 J. Zyaie, M. Sheikhi, J. Baniasadi, S. Sahebi, T. Mohammadi, Chem. Eng. Technol. 2018, 41 (9), 1706–1715. DOI: https://doi.org/10.1002/ceat.201800084
- 32 C. Liu, X. Lei, L. Wang, J. Jia, X. Liang, X. Zhao, H. Zhu, Chem. Eng. J. 2017, 327, 60–70. DOI: https://doi.org/10.1016/j.cej.2017.06.070
- 33 S. Qi, R. Wang, G. K. M. Chaitra, J. Torres, X. Hu, A. G. Fane, J. Membr. Sci. 2016, 508, 94–103. DOI: https://doi.org/10.1016/j.memsci.2016.02.013
- 34 P. Mondal, N. Hermans, A. T. K. Tran, Y. Zhang, Y. Fang, X. Wang, J. Environ. Chem. Eng. 2014, 2 (3), 1309–1316. DOI: https://doi.org/10.1016/j.jece.2014.04.015
- 35 X. Liu, J. Wu, C. Liu, J. Wang, Sep. Purif. Technol. 2017, 177, 8–20. DOI: https://doi.org/10.1016/j.seppur.2016.12.025
- 36 A. Achilli, T. Y. Cathb, A. E. Childress, J. Membr. Sci. 2010, 364 (1–2), 233–241. DOI: https://doi.org/10.1016/j.memsci.2010.08.010
- 37 Y. Cui, Q. Ge, X. Y. Liu, T. S. Chung, J. Membr. Sci. 2014, 467, 188–194. DOI: https://doi.org/10.1016/j.memsci.2014.05.034