Membranes for CO2 /CH4 and CO2/N2 Gas Separation
Muhammad Chawla
Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, 300350 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorHammad Saulat
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
These authors contributed equally to this work.
Search for more papers by this authorMuhammad Masood Khan
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
Search for more papers by this authorMuhammad Mahmood Khan
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
Search for more papers by this authorCorresponding Author
Sikander Rafiq
University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan
Correspondence: Sikander Rafiq ([email protected], [email protected]), University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan.Search for more papers by this authorLinjuan Cheng
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
Search for more papers by this authorTanveer Iqbal
University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan
Search for more papers by this authorM. Imran Rasheed
University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan
Search for more papers by this authorMuhammad Zohaib Farooq
Tianjin University, School of Environmental Science and Engineering, 300350 Tianjin, China
Search for more papers by this authorMuhammad Saeed
Aibel AS, Department of Process Engineering, Norway
Search for more papers by this authorNasir M. Ahmad
National University of Sciences and Technology, School of Chemical and Materials Engineering, 44000 Islamabad, Pakistan
Search for more papers by this authorMuhammad Bilal Khan Niazi
National University of Sciences and Technology, School of Chemical and Materials Engineering, 44000 Islamabad, Pakistan
Search for more papers by this authorSidra Saqib
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, 54000 Lahore, Pakistan
Search for more papers by this authorFarrukh Jamil
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, 54000 Lahore, Pakistan
Search for more papers by this authorAhmad Mukhtar
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorNawshad Muhammad
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials (IRCBM), Lahore Campus, Defense Road Off Raiwind Road, Lahore, Pakistan
Search for more papers by this authorMuhammad Chawla
Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, 300350 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorHammad Saulat
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
These authors contributed equally to this work.
Search for more papers by this authorMuhammad Masood Khan
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
Search for more papers by this authorMuhammad Mahmood Khan
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
Search for more papers by this authorCorresponding Author
Sikander Rafiq
University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan
Correspondence: Sikander Rafiq ([email protected], [email protected]), University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan.Search for more papers by this authorLinjuan Cheng
Dalian University of Technology, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 116024 Dalian, China
Search for more papers by this authorTanveer Iqbal
University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan
Search for more papers by this authorM. Imran Rasheed
University of Engineering and Technology, Department of Chemical Polymer and Composite Material Engineering, New Campus, Lahore, Pakistan
Search for more papers by this authorMuhammad Zohaib Farooq
Tianjin University, School of Environmental Science and Engineering, 300350 Tianjin, China
Search for more papers by this authorMuhammad Saeed
Aibel AS, Department of Process Engineering, Norway
Search for more papers by this authorNasir M. Ahmad
National University of Sciences and Technology, School of Chemical and Materials Engineering, 44000 Islamabad, Pakistan
Search for more papers by this authorMuhammad Bilal Khan Niazi
National University of Sciences and Technology, School of Chemical and Materials Engineering, 44000 Islamabad, Pakistan
Search for more papers by this authorSidra Saqib
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, 54000 Lahore, Pakistan
Search for more papers by this authorFarrukh Jamil
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, 54000 Lahore, Pakistan
Search for more papers by this authorAhmad Mukhtar
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorNawshad Muhammad
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials (IRCBM), Lahore Campus, Defense Road Off Raiwind Road, Lahore, Pakistan
Search for more papers by this authorAbstract
Membrane technology has emerged as a leading tool worldwide for effective CO2 separation because of its well-known advantages, including high surface area, compact design, ease of maintenance, environmentally friendly nature, and cost-effectiveness. Polymeric and inorganic membranes are generally utilized for the separation of gas mixtures. The mixed-matrix membrane (MMM) utilizes the advantages of both polymeric and inorganic membranes to surpass the trade-off limits. The high permeability and selectivity of MMMs by incorporating different types of fillers exhibit the best performance for CO2 separation from natural gas and other flue gases. The recent progress made in the field of MMMs having different types of fillers is emphasized. Specifically, CO2/CH4 and CO2/N2 separation from various types of MMMs are comprehensively reviewed that are closely relevant to natural gas purification and compositional flue gas treatment
Supporting Information
Filename | Description |
---|---|
ceat201900375-sup-0001-misc_information.pdf348 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. Yuzik, CO2 as a Greenhouse Gas – The Importance of Carbon in the Atmosphere, Vol. 2019, Public Science Institute, USA 2019.
- 2 Q. Ma, J. Chem. Phys. 1998, 108, 3386. DOI: https://doi.org/10.1063/1.475774
- 3 A. Mukhtar, N. Mellon, S. Saqib, A. Khawar, S. Rafiq, S. Ullah, A. G. Al-Sehemi, M. Babar, M. A. Bustam, W. A. Khan, M. S. Tahir, Microporous Mesoporous Mater., in press. DOI: https://doi.org/10.1016/j.micromeso.2019.109883
- 4 N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, C. Klaysom, Chem. Eng. Technol. 2018, 41 (2), 211–223.
- 5 E. Tzimas, A. Georgakaki, Energy Policy 2010, 38 (8), 4252–4264.
- 6 A. A. Olajire, Energy 2010, 35 (6), 2610–2628.
- 7 Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, S.-P. Chai, J. Nat. Gas Chem. 2012, 21 (3), 282–298. DOI: https://doi.org/10.1016/S1003-9953(11)60366-6
- 8 C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12 (5), 745–769.
- 9 N. Kosinov, J. Gascon, F. Kapteijn, E. J. Hensen, J. Membr. Sci. 2016, 499, 65–79.
- 10 S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, J. Membr. Sci. 2011, 378 (1), 444–452. DOI: https://doi.org/10.1016/j.memsci.2011.05.025
- 11 R. Ur Rehman, S. Rafiq, N. Muhammad, A. L. Khan, A. Ur Rehman, L. TingTing, M. Saeed, F. Jamil, M. Ghauri, X. Gu, J. Appl. Polym. Sci. 2017, 134 (44), 45395. DOI: https://doi.org/10.1002/app.45395
- 12 M. Saeed, S. Rafiq, L. H. Bergersen, L. Deng, Sep. Purif. Technol. 2017, 179, 550–560. DOI: https://doi.org/10.1016/j.seppur.2017.02.022
- 13 S. Rafiq, Z. Man, S. Maitra, A. Maulud, F. Ahmad, N. Muhammad, Korean J. Chem. Eng. 2011, 28 (10), 2050–2056. DOI: https://doi.org/10.1007/s11814-011-0053-1
- 14 P. D. Bergman, E. M. Winter, Z.-Y. Chen, Energy Convers. Manage. 1997, 38, S211–S216.
- 15 D. Bailey, P. Feron, Oil Gas Sci. Technol. 2005, 60 (3), 461–474.
- 16 G. Booras, S. Smelser, Energy 1991, 16 (11–12), 1295–1305.
- 17 A. Aroonwilas, P. Tontiwachwuthikul, Energy Convers. Manage. 1997, 38, S75–S80.
- 18 S.-L. Wee, C.-T. Tye, S. Bhatia, Sep. Purif. Technol. 2008, 63 (3), 500–516. DOI: https://doi.org/10.1016/j.seppur.2008.07.010
- 19 J. D. Wind, D. R. Paul, W. J. Koros, J. Membr. Sci. 2004, 228 (2), 227–236. DOI: https://doi.org/10.1016/j.memsci.2003.10.011
- 20 M. Pera-Titus, Chem. Rev. 2013, 114 (2), 1413–1492.
- 21 L. Lozano, C. Godínez, A. De Los Rios, F. Hernández-Fernández, S. Sánchez-Segado, F. J. Alguacil, J. Membr. Sci. 2011, 376 (1–2), 1–14.
- 22 M. Mubashir, Y. Y. Fong, C. T. Leng, L. K. Keong, Chem. Eng. Technol. 2018, 41 (2), 235–252.
- 23 D. S. Sholl, R. P. Lively, Nature 2016, 532 (7600), 435–438.
- 24
S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Pat. Chem. Eng.
2008, 1 (1), 52–66.
10.2174/2211334710801010052 Google Scholar
- 25 H. Bai, W. W. Ho, Ind. Eng. Chem. Res. 2008, 48 (5), 2344–2354.
- 26 M. S. Suleman, K. K. Lau, Y. F. Yeong, Chem. Eng. Technol. 2016, 39 (9), 1604–1616. DOI: https://doi.org/10.1002/ceat.201500495
- 27 Kirk-Othmer Encyclopedia of Chemical Technology (Eds.: R. W. Baker, U. B. Staff), John Wiley & Sons, New York 2000.
- 28
Fundamentals of Natural Gas Processing (Eds.: A. J. Kidnay, W. R. Parrish, D. G. McCartney), CRC Press, Boca Raton, FL
2011.
10.1201/b14397 Google Scholar
- 29 F. Ahmad, K. K. Lau, A. M. Shariff, G. Murshid, Comput. Chem. Eng. 2012, 36, 119–128. DOI: https://doi.org/10.1016/j.compchemeng.2011.08.002
- 30 Y. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, D. R. Paul, Prog. Polym. Sci. 2009, 34 (6), 561–580. DOI: https://doi.org/10.1016/j.progpolymsci.2008.12.004
- 31 W. Lin, J. Xu, L. Zhang, A. Gu, Int. J. Hydrogen Energy 2017, 42 (29), 18417–18424.
- 32 C. E. Powell, G. G. Qiao, J. Membr. Sci. 2006, 279 (1–2), 1–49.
- 33 S. R. Venna, M. A. Carreon, Chem. Eng. Sci. 2015, 124, 3–19.
- 34 P. Sun, K. Wang, H. Zhu, Adv. Mater. 2016, 28 (12), 2287–2310.
- 35 X. Zhu, C. Tian, S. Chai, K. Nelson, K. S. Han, E. W. Hagaman, G. M. Veith, S. M. Mahurin, H. Liu, S. Dai, Adv. Mater. 2013, 25 (30), 4152–4158.
- 36 J. Caro, Chem. Soc. Rev. 2016, 45 (12), 3468–3478.
- 37 M. Rezakazemi, A. E. Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, T. Matsuura, Prog. Polym. Sci. 2014, 39 (5), 817–861.
- 38 Preparation and Characterization of Blended Composite Membranes, Trans Tech Publications, Baech, Switzerland 2012.
- 39 S. Rafiq, L. Deng, M.-B. Hägg, ChemBioEng Rev. 2016, 3 (2), 68–85. DOI: https://doi.org/10.1002/cben.201500013
- 40 S. Rafiq, A. Maulud, Z. Man, M. I. A. Mutalib, F. Ahmad, A. U. Khan, A. L. Khan, M. Ghauri, N. Muhammad, Can. J. Chem. Eng. 2015, 93 (1), 88–95. DOI: https://doi.org/10.1002/cjce.22111
- 41 A. S. Kovvali et al., Immobilized Liquid Membranes for CO2 Separation, Division of Fuel Chemistry, American Chemical Society, Washington, D.C. 2000.
- 42 T.-S. Chung, L. Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 2007, 32 (4), 483–507. DOI: https://doi.org/10.1016/j.progpolymsci.2007.01.008
- 43 M. Wang, J. Zhao, X. Wang, A. Liu, K. K. Gleason, J. Mater. Chem. A 2017, 5 (19), 8860–8886.
- 44 W. J. Koros, Macromol. Symp. 2002, 188 (1), 13–22.
- 45 L. M. Robeson, J. Membr. Sci. 2008, 320 (1–2), 390–400.
- 46 S. Rafiq, Z. Man, F. Ahmad, S. Maitra, Interceram 2010, 59 (6), 341–349.
- 47 K.-S. Jang, H.-J. Kim, J. Johnson, W.-G. Kim, W. J. Koros, C. W. Jones, S. Nair, Chem. Mater. 2011, 23 (12), 3025–3028.
- 48 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211 (2), 335–348.
- 49 J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, C. J. Sumby, Angew. Chem., Int. Ed. 2017, 56 (32), 9292–9310.
- 50 M. Aroon, A. Ismail, T. Matsuura, M. Montazer-Rahmati, Sep. Purif. Technol. 2010, 75 (3), 229–242.
- 51 G. Dong, H. Li, V. Chen, J. Mater. Chem. A 2013, 1 (15), 4610–4630.
- 52 R. Mahajan, W. J. Koros, Ind. Eng. Chem. Res. 2000, 39 (8), 2692–2696.
- 53 T. Kusworo, A. Ismail, A. Mustafa, T. Matsuura, Sep. Purif. Technol. 2008, 61 (3), 249–257.
- 54 T. Merkel, B. Freeman, R. Spontak, Z. He, I. Pinnau, P. Meakin, A. Hill, Science 2002, 296 (5567), 519–522.
- 55 R. Mahajan, R. Burns, M. Schaeffer, W. J. Koros, J. Appl. Polym. Sci. 2002, 86 (4), 881–890.
- 56 M.-D. Jia, K.-V. Pleinemann, R.-D. Behling, J. Membr. Sci. 1992, 73 (2–3), 119–128.
- 57 M. J. C. Ordonez, K. J. Balkus Jr, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2010, 361 (1–2), 28–37.
- 58
R. W. Baker, Membrane Technology and Applications, John Wiley & Sons, New York
2012.
10.1002/9781118359686 Google Scholar
- 59 N. G. Kanse, S. Dawande, P. B. Dhanke, Mater. Today: Proc. 2018, 5 (2), 3541–3550.
- 60 A. L. Khan, X. Li, I. F. Vankelecom, J. Membr. Sci. 2011, 380 (1–2), 55–62.
- 61
M. I. Stewart, in Surface Production Operations, 3rd ed., (Ed: M. I. Stewart), Gulf Professional Publishing, Boston, MA
2014, 433–539.
10.1016/B978-0-12-382207-9.00009-3 Google Scholar
- 62 E. Lasseuguette, R. Malpass-Evans, M. Carta, N. B. McKeown, M.-C. Ferrari, Membranes 2018, 8 (4), 132.
- 63 J. Henis, in Polymeric Gas Separation Membranes (Eds.: D. R. Paul, Y. P. Yampol'skii), CRC Press, Boca Raton, FL 1994.
- 64 B. W. Rowe, L. M. Robeson, B. D. Freeman, D. R. Paul, J. Membr. Sci. 2010, 360 (1–2), 58–69.
- 65 P. Jha, J. D. Way, J. Membr. Sci. 2008, 324 (1), 151–161. DOI: https://doi.org/10.1016/j.memsci.2008.07.005
- 66 O. Lüdtke, R.-D. Behling, K. Ohlrogge, J. Membr. Sci. 1998, 146 (2), 145–157.
- 67 P. Kumar, S. Kim, J. Ida, V. V. Guliants, Ind. Eng. Chem. Res. 2008, 47 (1), 201–208.
- 68 S. Bhattacharya, S.-T. Hwang, J. Membr. Sci. 1997, 132 (1), 73–90.
- 69 G. He, Y. Mi, P. L. Yue, G. Chen, J. Membr. Sci. 1999, 153 (2), 243–258.
- 70 I. Pinnau, Z. He, J. Membr. Sci. 2004, 244 (1–2), 227–233.
- 71 S. Sridhar, B. Smitha, T. Aminabhavi, Sep. Purif. Rev. 2007, 36 (2), 113–174.
- 72 Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, G. Wilkes, J. Membr. Sci. 1997, 135 (1), 65–79.
- 73 F. Moghadam, M. Omidkhah, E. Vasheghani-Farahani, M. Pedram, F. Dorosti, Sep. Purif. Technol. 2011, 77 (1), 128–136.
- 74 C.-Y. Liang, P. Uchytil, R. Petrychkovych, Y.-C. Lai, K. Friess, M. Sipek, M. M. Reddy, S.-Y. Suen, Sep. Purif. Technol. 2012, 92, 57–63.
- 75 J. Ahmad, K. Deshmukh, M. B. Hägg, Int. J. Polym. Anal. Charact. 2013, 18 (4), 287–296.
- 76 Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao, J. Yang, J. Membr. Sci. 2014, 467, 23–35.
- 77 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211 (2), 311–334.
- 78 T.-S. Chung, S. S. Chan, R. Wang, Z. Lu, C. He, J. Membr. Sci. 2003, 211 (1), 91–99.
- 79 A. Ahmad, Z. Jawad, S. Low, S. Zein, J. Membr. Sci. 2014, 451, 55–66.
- 80 Z. Jawad, A. Ahmad, S. Low, T. Chew, S. Zein, J. Membr. Sci. 2015, 476, 590–601.
- 81 S. Kim, T. W. Pechar, E. Marand, Desalination 2006, 192 (1–3), 330–339.
- 82 S. Sanip, A. Ismail, P. Goh, T. Soga, M. Tanemura, H. Yasuhiko, Sep. Purif. Technol. 2011, 78 (2), 208–213.
- 83 H. Cong, J. Zhang, M. Radosz, Y. Shen, J. Membr. Sci. 2007, 294 (1–2), 178–185.
- 84 B. Yu, H. Cong, Z. Li, J. Tang, X. S. Zhao, J. Appl. Polym. Sci. 2013, 130 (4), 2867–2876.
- 85 R. S. Murali, S. Sridhar, T. Sankarshana, Y. Ravikumar, Ind. Eng. Chem. Res. 2010, 49 (14), 6530–6538.
- 86 H. Sun, T. Wang, Y. Xu, W. Gao, P. Li, Q. J. Niu, Sep. Purif. Technol. 2017, 177, 327–336.
- 87 A. Moghadassi, Z. Rajabi, S. Hosseini, M. Mohammadi, Sep. Sci. Technol. 2013, 48 (8), 1261–1271.
- 88 D. Bastani, N. Esmaeili, M. Asadollahi, J. Ind. Eng. Chem. 2013, 19 (2), 375–393.
- 89 F. Dorosti, M. Omidkhah, M. Pedram, F. Moghadam, Chem. Eng. J. 2011, 171 (3), 1469–1476.
- 90 R. S. Murali, A. Ismail, M. Rahman, S. Sridhar, Sep. Purif. Technol. 2014, 129, 1–8.
- 91 J. Ahmad, M.-B. Hägg, J. Membr. Sci. 2013, 427, 73–84.
- 92 R. T. Adams, J. S. Lee, T.-H. Bae, J. K. Ward, J. Johnson, C. W. Jones, S. Nair, W. J. Koros, J. Membr. Sci. 2011, 367 (1–2), 197–203.
- 93 S. Hassanajili, M. Khademi, P. Keshavarz, J. Membr. Sci. 2014, 453, 369–383.
- 94 M. Sadeghi, M. A. Semsarzadeh, M. Barikani, M. P. Chenar, J. Membr. Sci. 2011, 376 (1–2), 188–195.
- 95 M. W. Anjum, F. de Clippel, J. Didden, A. L. Khan, S. Couck, G. V. Baron, J. F. Denayer, B. Sels, I. Vankelecom, J. Membr. Sci. 2015, 495, 121–129.
- 96 J. Wang, Y. Li, Z. Zhang, Z. Hao, J. Mater. Chem. A 2015, 3 (16), 8650–8658.
- 97 Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, T. Yildirim, J. Am. Chem. Soc. 2013, 135 (32), 11887–11894. DOI: https://doi.org/10.1021/ja4045289
- 98 J. A. Mason, M. Veenstra, J. R. Long, Chem. Sci. 2014, 5 (1), 32–51. DOI: https://doi.org/10.1039/C3SC52633J
- 99 P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem., Int. Ed. 2006, 45 (36), 5974–5978. DOI: https://doi.org/10.1002/anie.200601878
- 100 J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38 (5), 1450–1459. DOI: https://doi.org/10.1039/B807080F
- 101 M. C. So, G. P. Wiederrecht, J. E. Mondloch, J. T. Hupp, O. K. Farha, Chem. Commun. 2015, 51 (17), 3501–3510. DOI: https://doi.org/10.1039/C4CC09596K
- 102 J.-L. Wang, C. Wang, W. Lin, ACS Catal. 2012, 2 (12), 2630–2640. DOI: https://doi.org/10.1021/cs3005874
- 103 M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha, J. T. Hupp, Angew. Chem., Int. Ed. 2014, 53 (2), 497–501. DOI: https://doi.org/10.1002/anie.201307520
- 104 E. López-Maya, C. Montoro, L. M. Rodríguez-Albelo, S. D. Aznar Cervantes, A. A. Lozano-Pérez, J. L. Cenís, E. Barea, J. A. R. Navarro, Angew. Chem., Int. Ed. 2015, 54 (23), 6790–6794. DOI: https://doi.org/10.1002/anie.201502094
- 105 J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112 (2), 869–932. DOI: https://doi.org/10.1021/cr200190s
- 106 L. Cheng, J. Yang, H. Saulat, J. Lu, Y. Zhang, Chem. Lett. 2019, 48, 449–452.
- 107 Q. Xin, J. Ouyang, T. Liu, Z. Li, Z. Li, Y. Liu, S. Wang, H. Wu, Z. Jiang, X. Cao, ACS Appl. Mater. Interfaces 2015, 7 (2), 1065–1077.
- 108 O. G. Nik, X. Y. Chen, S. Kaliaguine, J. Membr. Sci. 2012, 413, 48–61.
- 109 M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, I. F. Vankelecom, ACS Appl. Mater. Interfaces 2015, 7 (45), 25193–25201.
- 110 T. Rodenas, M. van Dalen, P. Serra-Crespo, F. Kapteijn, J. Gascon, Microporous Mesoporous Mater. 2014, 192, 35–42.
- 111
B. Zornoza, T. Rodenas, C. Téllez, J. Coronas, J. Gascon, F. Kapteijn, Procedia Eng.
2012, 44, 2121–2123.
10.1016/j.proeng.2012.09.067 Google Scholar
- 112 L. Ma, F. Svec, T. Tan, Y. Lv, ACS Appl. Nano Mater. 2018, 1 (6), 2808–2818.
- 113 B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, Nat. Energy 2017, 2 (7), 17086.
- 114 M. C. Buzzeo, R. G. Evans, R. G. Compton, ChemPhysChem 2004, 5 (8), 1106–1120.
- 115 D. R. MacFarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Sun, G. Annat, W. Neil, E. I. Izgorodina, Acc. Chem. Res. 2007, 40 (11), 1165–1173.
- 116 R. D. Rogers, K. R. Seddon, Science 2003, 302 (5646), 792–793.
- 117 R. Martínez-Palou, P. F. Sánche, in Ionic Liquids: Theory, Properties, New Approaches, IntechOpen, London 2011.
- 118 J. E. Bara, S. Lessmann, C. J. Gabriel, E. S. Hatakeyama, R. D. Noble, D. L. Gin, Ind. Eng. Chem. Res. 2007, 46 (16), 5397–5404.
- 119 E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis, J. Am. Chem. Soc. 2002, 124 (6), 926–927.
- 120 M. Freemantle, An Introduction to Ionic Liquids, Royal Society of Chemistry, London 2010.
- 121 A. Berthod, M. Ruiz-Angel, S. Carda-Broch, J. Chromatogr., A 2008, 1184 (1–2), 6–18.
- 122 R. Sheldon, Chem. Commun. 2001, 23, 2399–2407.
- 123 V. I. Pârvulescu, C. Hardacre, Chem. Rev. 2007, 107 (6), 2615–2665.
- 124 L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, Nature 1999, 399 (6731), 28–29. DOI: https://doi.org/10.1038/19887
- 125 J. L. Anthony, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2002, 106 (29), 7315–7320.
- 126 P. Scovazzo, J. Kieft, D. A. Finan, C. Koval, D. DuBois, R. Noble, J. Membr. Sci. 2004, 238 (1–2), 57–63.
- 127 M. Ramdin, T. W. de Loos, T. J. Vlugt, Ind. Eng. Chem. Res. 2012, 51 (24), 8149–8177.
- 128 R. D. Noble, D. L. Gin, J. Membr. Sci. 2011, 369 (1–2), 1–4.
- 129 N. Gathergood, M. T. Garcia, P. J. Scammells, Green Chem. 2004, 6 (3), 166–175.
- 130 Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, R. D. Noble, J. Membr. Sci. 2010, 350 (1–2), 117–123.
- 131 W. Fam, J. Mansouri, H. Li, V. Chen, J. Membr. Sci. 2017, 537, 54–68.
- 132 F. Moghadam, E. Kamio, H. Matsuyama, J. Membr. Sci. 2017, 525, 290–297.
- 133 O. Bakhtiari, N. Sadeghi, Int. J. Chem. Eng. Appl. 2014, 5 (2), 198–203.
- 134
N. Widjojol, Y. Lil, L. Jiang, T.-S. Chung, in Advanced Materials for Membrane Preparation, Bentham Books, Sharjah, United Arab Emirates
2012, 64.
10.2174/978160805308711201010064 Google Scholar
- 135 N. Jusoh, Y. F. Yeong, T. L. Chew, K. K. Lau, A. M. Shariff, Sep. Purif. Rev. 2016, 45 (4), 321–344.
- 136 R. D. Noble, J. Membr. Sci. 2011, 378 (1–2), 393–397.
- 137 S. Kim, L. Chen, J. K. Johnson, E. Marand, J. Membr. Sci. 2007, 294 (1–2), 147–158.
- 138 S. Saqib, S. Rafiq, M. Chawla, M. Saeed, N. Muhammad, S. Khurram, K. Majeed, A. L. Khan, M. Ghauri, F. Jamil, M. Aslam, Chem. Eng. Technol. 2018, 41, 30–44.
- 139 Y. Li, H.-M. Guan, T.-S. Chung, S. Kulprathipanja, J. Membr. Sci. 2006, 275 (1–2), 17–28.
- 140 A. M. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 2008, 314 (1–2), 193–199.
- 141 H. H. Yong, H. C. Park, Y. S. Kang, J. Won, W. N. Kim, J. Membr. Sci. 2001, 188 (2), 151–163.
- 142 Y. Li, T. S. Chung, S. Kulprathipanja, AIChE J. 2007, 53 (3), 610–616.
- 143 S. Husain, W. J. Koros, J. Membr. Sci. 2007, 288 (1–2), 195–207.