PEBA/PSf Multilayer Composite Membranes for CO2 Separation: Influence of Dip Coating Parameters
Mahdi Elyasi Kojabad
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Search for more papers by this authorMasumeh Momeni
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Ali Akbar Babaluo
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Correspondence: Ali Akbar Babaluo ([email protected]), Nanostructure Material Research Center (NMRC), Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.Search for more papers by this authorMohammad Javad Vaezi
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Search for more papers by this authorMahdi Elyasi Kojabad
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Search for more papers by this authorMasumeh Momeni
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Ali Akbar Babaluo
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Correspondence: Ali Akbar Babaluo ([email protected]), Nanostructure Material Research Center (NMRC), Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.Search for more papers by this authorMohammad Javad Vaezi
Sahand University of Technology, Nanostructure Material Research Center (NMRC), P.O. Box 51335-1996, Tabriz, Iran
Search for more papers by this authorAbstract
Polyether block amide (PEBA) polymeric layers were prepared on polysulfone (PSf) supports via dip coating. The effects of the coating speed and the solution concentration on the membrane performance were studied. The membranes were characterized by scanning electron microscopy, Fourier transform infrared spectra, and gas permeation. The coating speed was adjusted in the range of 0.32–0.48 cm s−1 at a solution concentration of 3 wt % to obtain suitable membranes so that the CO2 permeance and the CO2/N2 selectivity increased by more than three and ten times, respectively, compared to other speed ranges. Statistical analysis also showed that the effect of the interaction between solution concentration and coating speed is more considerable than the separate effects of both factors.
References
- 1 J. B. Geng, Q. Ji, Y. Fan, Appl. Energy 2014, 132, 23–33. DOI: https://doi.org/10.1016/j.apenergy.2014.06.064
- 2 V. Esen, B. Oral, Energy Policy 2016, 93 (4), 101–109. DOI: https://doi.org/10.1016/j.enpol.2016.02.037
- 3 G. George, N. Bhoria, S. Alhallaq, A. Abdala, V. Mittal, Sep. Purif. Technol. 2016, 158, 333–356. DOI: https://doi.org/10.1016/j.seppur.2015.12.033
- 4 A. L. Lee, H. L. Feldkirchner, S. A. Stern, Y. Houde, J. P. Gamez, H. S. Meyer, Gas Sep. Purif. 1995, 9 (1), 35–43. DOI: https://doi.org/10.1016/0950-4214(95)92175-C
- 5 C. A. Scholes, G. W. Stevens, S. E. Kentish, Fuel 2012, 96, 15–28. DOI: https://doi.org/10.1016/j.fuel.2011.12.074
- 6 B. D. Bhide, A. Voskericyan, S. A. Stern, J. Membr. Sci. 1998, 140 (1), 27–49. DOI: https://doi.org/10.1016/S0376-7388(97)00257-3
- 7 F. Karamouz, H. Maghsoudi, R. Yegani, Chem. Eng. Technol. 2018, 41 (9), 1767–1775. DOI: https://doi.org/10.1002/ceat.201800087
- 8 L. S. White, T. A. Blinka, H. A. Kloczewski, I. Wang, J. Membr. Sci. 1995, 103 (1), 73–82. DOI: https://doi.org/10.1016/0376-7388(94)00313-N
- 9 T. E. Rufford, S. Smart, G. C. Y. Watson, B. F. Graham, J. Boxall, J. C. Diniz da Costa, E. F. May, J. Pet. Sci. Eng. 2012, 94, 123–154. DOI: https://doi.org/10.1016/j.petrol.2012.06.016
- 10 F. Karamouz, H. Maghsoudi, R. Yegani, J. Nat. Gas Sci. Eng. 2016, 35, 980–985. DOI: https://doi.org/10.1016/j.jngse.2016.09.036
- 11 K. C. Khulbe, C. Y. Feng, T. Matsuura, Synthetic Polymeric Membranes : Characterization by Atomic Force Microscopy, Springer, Ottawa 2008. DOI: https://doi.org/10.1007/978-3-540-73994-4
- 12 S. L. Liu, L. Shao, M. L. Chua, C. H. Lau, H. Wang, S. Quan, Prog. Polym. Sci. 2013, 38 (4), 1089–1120. DOI: https://doi.org/10.1016/j.progpolymsci.2013.02.002
- 13 D. J. Buckwalter, J. M. Dennis, T. E. Long, Prog. Polym. Sci. 2015, 45, 1–22. DOI: https://doi.org/10.1016/j.progpolymsci.2014.11.003
- 14 J. H. Kim, S. Y. Ha, Y. M. Lee, J. Membr. Sci. 2001, 190 (2), 179–193. DOI: https://doi.org/10.1016/S0376-7388(01)00444-6
- 15 S. Todros, A. N. Natali, M. Piga, G. A. Giffin, G. Pace, V. Di Noto, Polym. Degrad. Stab. 2013, 98 (6), 1126–1137. DOI: https://doi.org/10.1016/j.polymdegradstab.2013.03.014
- 16 J. Sun, Q. Li, G. Chen, J. Duan, G. Liu, W. Jin, Sep. Purif. Technol. 2019, 217, 229–239. DOI: https://doi.org/10.1016/j.seppur.2019.02.036
- 17 H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Sep. Purif. Technol. 2019, 214, 78–86. DOI: https://doi.org/10.1016/J.SEPPUR.2018.02.020
- 18 X. Zhang, T. Zhang, Y. Wang, J. Li, C. Liu, N. Li, J. Membr. Sci. 2018, 560, 38–46. DOI: https://doi.org/10.1016/j.memsci.2018.05.004
- 19 L. Xiang, Y. Pan, J. Jiang, Y. Chen, J. Chen, L. Zhang, C. Wang, Chem. Eng. Sci. 2017, 160, 236–244. DOI: https://doi.org/10.1016/j.ces.2016.11.037
- 20 A. Car, C. Stropnik, W. Yave, K. V. Peinemann, Sep. Purif. Technol. 2008, 62 (1), 110–117. DOI: https://doi.org/10.1016/j.seppur.2008.01.001
- 21 M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M. M. Khan, V. Abetz, J. Membr. Sci. 2013, 437, 286–297. DOI: https://doi.org/10.1016/j.memsci.2013.03.001
- 22 V. Mozaffari, M. Sadeghi, A. Fakhar, G. Khanbabaei, A. F. Ismail, Sep. Purif. Technol. 2017, 185, 202–214. DOI: https://doi.org/10.1016/j.seppur.2017.05.028
- 23 A. Mahmoudi, M. Asghari, V. Zargar, J. Ind. Eng. Chem. 2015, 23, 238–242. DOI: https://doi.org/10.1016/j.jiec.2014.08.023
- 24 E. Ahmadpour, A. A. Shamsabadi, R. M. Behbahani, M. Aghajani, A. Kargari, J. Nat. Gas Sci. Eng. 2014, 21, 518–523. DOI: https://doi.org/10.1016/j.jngse.2014.09.021
- 25 R. Surya Murali, A. F. Ismail, M. A. Rahman, S. Sridhar, Sep. Purif. Technol. 2014, 129, 1–8. DOI: https://doi.org/10.1016/j.seppur.2014.03.017
- 26 V. I. Bondar, B. D. Freeman, I. Pinnau, J. Polym. Sci. Phys. 1999, 37 (3), 2463–2475. DOI: https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
- 27 L. Wang, Y. Li, S. Li, P. Ji, C. Jiang, J. Energy Chem. 2014, 23 (6), 717–725. DOI: https://doi.org/10.1016/S2095-4956(14)60204-7
- 28 H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammed, J. Kniep, T. C. Merkel, T. Wu, R. C. Lambrecht, J. Membr. Sci. 2014, 457, 149–161. DOI: https://doi.org/10.1016/j.memsci.2014.01.020
- 29 J. Li, N. Wang, H. Yan, G. Zhang, Z. Qin, S. Ji, G. Zhang, Chem. Eng. J. 2016, 289, 106–113. DOI: https://doi.org/10.1016/j.cej.2015.12.068
- 30
Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ.
2016, 1 (9), 102–128. DOI: https://doi.org/10.1016/j.gee.2016.08.001
10.1016/j.gee.2016.08.001 Google Scholar
- 31
R. W. Baker, Membrane Technology and Applications, 3rd ed., John Wiley & Sons, Chichester
2004. DOI: https://doi.org/10.1002/0470020393
10.1002/0470020393 Google Scholar
- 32 M. Maleki, M. Reyssat, F. Restagno, D. Quéré, C. Clanet, J. Colloid Interface Sci. 2011, 354 (1), 359–363. DOI: https://doi.org/10.1016/j.jcis.2010.07.069
- 33 X. Wu, I. Wyman, G. Zhang, J. Lin, Z. Liu, Y. Wang, H. Hu, Prog. Org. Coatings 2016, 90, 463–471. DOI: https://doi.org/10.1016/j.porgcoat.2015.08.008
- 34 P. Yimsiri, M. R. MacKley, Chem. Eng. Sci. 2006, 61 (11), 3496–3505. DOI: https://doi.org/10.1016/j.ces.2005.12.018
- 35 A. Kargari, A. Arabi Shamsabadi, M. Bahrami Babaheidari, Int. J. Hydrogen Energy 2014, 39 (12), 6588–6597. DOI: https://doi.org/10.1016/j.ijhydene.2014.02.009
- 36 Y. Li, J. Shen, K. Guan, G. Liu, H. Zhou, W. Jin, J. Membr. Sci. 2016, 510, 338–347. DOI: https://doi.org/10.1016/j.memsci.2016.03.013
- 37 M. Momeni, M. Elyasi-Kojabad, S. Khanmohammadi, Z. Farhadi, R. Ghalandarzadeh, A. A. Babaluo, M. Zare, J. Nat. Gas Sci. Eng. 2019, 62, 236–246. DOI: https://doi.org/10.1016/j.jngse.2018.12.014
- 38 X. Ren, J. Ren, H. Li, S. Feng, M. Deng, Int. J. Greenh. Gas Control 2012, 8, 111–120. DOI: https://doi.org/10.1016/j.ijggc.2012.01.017
- 39 J. W. Tukey, Biometrics 1949, 5 (3), 232–242. DOI: https://doi.org/10.2307/3001938
- 40 M. Sadrzadeh, M. Amirilargani, K. Shahidi, T. Mohammadi, J. Membr. Sci. 2009, 342 (1/2), 236–250. DOI: https://doi.org/10.1016/j.memsci.2009.06.047
- 41 J. G. Wijmans, R. W. Baker, J. Membr. Sci. 1995, 107 (1/2), 1–21. DOI: https://doi.org/10.1016/0376-7388(95)00102-I
- 42 A. A. Babaluo, M. Kokabi, M. Manteghian, R. Sarraf-Mamoory, J. Eur. Ceram. Soc. 2004, 24 (15/16), 3779–3787. DOI: https://doi.org/10.1016/j.jeurceramsoc.2004.01.007
- 43 C. J. Brinker, Chemical Solution Deposition of Functional Oxide Thin Films, Springer, Wien 2013, Ch. 10. DOI: https://doi.org/10.1007/978-3-211-99311-8_10
- 44
M. Mulder, Basic Principles of Membrane Technology, Springer, Dordrecht
1996. DOI: https://doi.org/10.1007/978-94-009-1766-8
10.1007/978-94-009-1766-8 Google Scholar
- 45 O. Cohu, H. Benkreira, Chem. Eng. Sci. 1998, 53 (3), 533–540. DOI: https://doi.org/10.1016/S0009-2509(97)00323-0
Citing Literature
July 2020
Pages 1451-1460