Poly(vinyl alcohol)/Carboxyl Graphene Membranes for Ethanol Dehydration by Pervaporation
Corresponding Author
Guanglu Han
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Correspondence: Guanglu Han ([email protected]), Yonghui Zhang ([email protected]), Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, Zhengzhou 450001, China.Search for more papers by this authorZhe Chen
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorLifang Cai
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorCorresponding Author
Yonghui Zhang
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Correspondence: Guanglu Han ([email protected]), Yonghui Zhang ([email protected]), Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, Zhengzhou 450001, China.Search for more papers by this authorJunfeng Tian
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorHuanhuan Ma
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorShaoming Fang
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorCorresponding Author
Guanglu Han
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Correspondence: Guanglu Han ([email protected]), Yonghui Zhang ([email protected]), Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, Zhengzhou 450001, China.Search for more papers by this authorZhe Chen
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorLifang Cai
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorCorresponding Author
Yonghui Zhang
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Correspondence: Guanglu Han ([email protected]), Yonghui Zhang ([email protected]), Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, Zhengzhou 450001, China.Search for more papers by this authorJunfeng Tian
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorHuanhuan Ma
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorShaoming Fang
Zhengzhou University of Light Industry, School of Material and Chemical Engineering, Kexue Avenue, 450001 Zhengzhou, China
Search for more papers by this authorAbstract
Carboxyl graphene (CG) with two functions of hybridization and crosslinking was incorporated into poly(vinyl alcohol) (PVA) matrix to form PVA/CG mixed-matrix membranes (MMMs). The membranes demonstrated excellent mechanical properties and thermal stability. The improved hydrophilicity and formed crosslinking structure led to moderate swelling. The membrane crystallinity decreased and the free volume was promoted with increasing CG loading amount. The pervaporation (PV) separation performance for ethanol dehydration indicated that both permeation flux and separation factor were enhanced simultaneously at the optimum CG loading. Subsequently, the permeation flux continued to increase while the separation factor declined at higher CG loadings.
Supporting Information
Filename | Description |
---|---|
ceat201900149-sup-0001-misc_information.pdf504.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 N. Raoufi, M. Asadollahzadeh, S. Shirazian, Chem. Eng. Technol. 2018, 41 (2), 278–284. DOI: https://doi.org/10.1002/ceat.201700303
- 2 N. L. Le, Y. Wang, T. S. Chung, J. Membr. Sci. 2012, 415–416, 109–121. DOI: https://doi.org/10.1016/j.memsci.2012.04.042
- 3 Z. Jiang, J. Zhao, C. Zhao, C. Gao, F. Pan, B. Wang, X. Cao, J. Yang, J. Membr. Sci. 2014, 469, 272–283. DOI: https://doi.org/10.1016/j.memsci.2014.06.053
- 4 R. S. Xing, H. Wu, C. H. Zhao, H. Gomaa, J. Zhao, F. S. Pan, Z. Y. Jiang, Chem. Eng. Technol. 2016, 39 (5), 969–978. DOI: https://doi.org/10.1002/ceat.201500622
- 5 S. Fazlifard, T. Mohammadi, O. Bakhtiari, Chem. Eng. Technol. 2017, 40 (4), 648–655. DOI: https://doi.org/10.1002/ceat.201500499
- 6 S. Khoonsap, S. Amnuaypanich, J. Membr. Sci. 2011, 367, 182–189. DOI: https://doi.org/10.1016/j.memsci.2010.10.058
- 7 Q. G. Zhang, Q. L. Liu, A. M. Zhu, Y. Xiong, L. Ren, J. Membr. Sci. 2009, 335, 68–75. DOI: https://doi.org/10.1016/j.memsci.2009.02.039
- 8 B. Bolto, M. Hoang, Z. Xie, Chem. Eng. Process. Process Intensif. 2011, 50, 227–235. DOI: https://doi.org/10.1016/j.cep.2011.01.003
- 9 A. V. Penkova, S. F. A. Acquah, M. E. Dmitrenko, M. P. Sokolova, M. E. Mikhailova, E. S. Polyakov, S. S. Ermakov, D. A. Markelov, D. Roizard, Mater. Design 2016, 96, 416–423. DOI: https://doi.org/10.1016/j.matdes.2016.02.046
- 10 M. E. Dmitrenko, A. V. Penkova, A. B. Missyul, A. I. Kuzminova, D. A. Markelov, S. S. Ermakov, D. Roizard, Sep. Purif. Technol. 2017, 187, 285–293. DOI: https://doi.org/10.1016/j.seppur.2017.06.061
- 11 A. V. Penkova, M. E. Dmitrenko, N. A. Savon, A. B. Missyul, A. S. Mazur, A. I. Kuzminova, A. A. Zolotarev, V. Mikhailovskii, E. Lahderanta, D. A. Markelov, K. N. Semenov, S. S. Ermakov, Sep. Purif. Technol. 2018, 204, 1–12. DOI: https://doi.org/10.1016/j.seppur.2018.04.052
- 12 J. Wang, M. Li, S. Zhou, A. Xue, Y. Zhang, Y. Zhao, J. Zhong, Q. Zhang, Sep. Purif. Technol. 2017, 188, 24–37. DOI: https://doi.org/10.1016/j.seppur.2017.07.008
- 13 J. Wang, M. Li, S. Zhou, A. Xue, Y. Zhang, Y. Zhao, J. Zhong, Chem. Eng. Sci. 2018, 181, 237–250. DOI: https://doi.org/10.1016/j.ces.2018.02.009
- 14 G. B. Thorat, S. Gupta, Z. V. P. Murthy, Chin. J. Chem. Eng. 2017, 25, 1402–1411. DOI: https://doi.org/10.1016/j.cjche.2017.02.011
- 15 Q. Liu, H. Wang, C. Wu, Z. Wei, H. Wang, Sep. Purif. Technol. 2017, 188, 282–292. DOI: https://doi.org/10.1016/j.seppur.2017.06.038
- 16 W. Zhang, Y. Ying, J. Ma, X. Guo, H. Huang, D. Liu, C. Zhong, J. Membr. Sci. 2017, 527, 8–17. DOI: https://doi.org/10.1016/j.memsci.2017.01.001
- 17 G. Wu, M. Jiang, T. Zhang, Z. Jia, J. Membr. Sci. 2016, 507, 72–80. DOI: https://doi.org/10.1016/j.memsci.2016.01.048
- 18 Z. Wei, Q. Liu, C. Wu, H. Wang, H. Wang, Sep. Purif. Technol. 2018, 201, 256–267. DOI: https://doi.org/10.1016/j.seppur.2018.03.015
- 19 L. L. Xia, C. L. Li, Y. Wang, J. Membr. Sci. 2016, 498, 263–275. DOI: https://doi.org/10.1016/j.memsci.2015.10.025
- 20 S. Chaudhari, Y. Kwon, M. Moon, M. Shon, Y. Park, S. Nam, Vacuum 2018, 147, 115–125. DOI: https://doi.org/10.1016/j.vacuum.2017.10.024
- 21 X. Ren, X. Jing, L. Liu, L. Guo, M. Zhang, Y. Li, RSC Adv. 2014, 4, 53987–53992. DOI: https://doi.org/10.1039/c4ra09073j
- 22 L. Yang, X. Li, S. Yan, M. Wang, P. Liu, Y. Dong, C. Zhang, Anal. Methods 2015, 7, 5303–5310. DOI: https://doi.org/10.1039/C5AY01062D
- 23 A. Anand, B. Unnikrishnan, J. Y. Mao, H. J. Lin, C. C. Huang, Desalination 2018, 429, 119–133. DOI: https://doi.org/10.1016/j.desal.2017.12.012
- 24 A. Huang, B. Feng, J. Membr. Sci. 2018, 548, 59–65. DOI: https://doi.org/10.1016/j.memsci.2017.11.016
- 25 B. M. Yoo, J. E. Shin, H. D. Lee, H. B. Park, Curr. Opin. Chem. Eng. 2017, 16, 39–47. DOI: https://doi.org/10.1016/j.coche.2017.04.004
- 26 M. Sun, J. Li, Nano Today 2018, 20, 121–137. DOI: https://doi.org/10.1016/j.nantod.2018.04.007
- 27 W. S. Hung, Y. H. Chiao, A. Sengupta, Y. W. Lin, S. R. Wickramasinghe, C. C. Hu, H. A. Tsai, K. R. Lee, J. Y. Lai, Carbon 2019, 142, 337–345. DOI: https://doi.org/10.1016/j.carbon.2018.10.058
- 28 K. Huang, G. Liu, W. Jin, Curr. Opin. Chem. Eng. 2017, 16, 56–64. DOI: https://doi.org/10.1016/j.coche.2017.04.009
- 29 L. Wang, N. Wang, H. Yang, Q. An, B. Li, S. Ji, J. Membr. Sci. 2018, 559, 8–18. DOI: https://doi.org/10.1016/j.memsci.2018.04.051
- 30 M. Wang, F. Pan, L. Yang, Y. Song, H. Wu, X. Cheng, G. Liu, H. Yang, H. Wang, Z. Jiang, X. Cao, J. Membr. Sci. 2018, 563, 903–913. DOI: https://doi.org/10.1016/j.memsci.2018.06.062
- 31 D. Hua, R. K. Rai, Y. Zhang, T. S. Chung, Chem. Eng. Sci. 2017, 161, 341–349. DOI: https://doi.org/10.1016/j.ces.2016.12.061
- 32 W. S. Hung, S. M. Chang, R. L. G. Lecaros, Y. L. Ji, Q. F. An, C. C. Hu, K. R. Lee, J. Y. Lai, Carbon 2017, 117, 112–119. DOI: https://doi.org/10.1016/j.carbon.2017.02.088
- 33 J. R. Yang, G. S. Shi, Y. S. Tu, H. P. Fang, Angew. Chem. Int. Ed. 2014, 53, 10190–10194. DOI: https://doi.org/10.1002/anie.201404144
- 34 H. Li, X. Liu, S. Q. Qi, L. L. Xu, G. S. Shi, Y. H. Ding, X. Y. Yan, Y. Huang, J. X. Ge, Angew. Chem. Int. Ed. 2017, 56, 14090–14095. DOI: https://doi.org/10.1002/ange.201707823
- 35 L. Chen, G. S. Shi, J. Shen, B. Q. Peng, B. W. Zhang, Y. Z. Wang, F. G. Bian, J. J. Wang, D. Y. Li, Z. Qian, G. Xu, G. P. Liu, J. R. Zeng, L. J. Zhang, Y. Z. Yang, G. Q. Zhou, M. H. Wu, W. Q. Jin, J. Y. Li, H. P. Fang, Nature 2017, 550, 380–383. DOI: https://doi.org/10.1038/nature24044
- 36 G. S. Shi, L. Chen, Y. Z. Yang, D. Y. Li, Z. Qian, S. S. Liang, L. Yan, L. H. Li, M. H. Wu, H. P. Fang, Nat. Chem. 2018, 10, 776–779. DOI: https://doi.org/10.1038/s41557-018-0061-4
- 37 Y. Z. Yang, L. H. Mu, L. Chen, G. S. Shi, H. P. Fang, Phys. Chem. Chem. Phys. 2019, 21, 7623–7629. DOI: https://doi.org/10.1039/c8cp07837h
- 38 N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, A. A. Zainudin, Optik 2019, 178, 802–812. DOI: https://doi.org/10.1016/j.ijleo.2018.10.071
- 39 S. Falina, M. Syamsul, Y. Iyama, M. Hasegawa, Y. Koga, H. Kawarada, Diamond Relat. Mater. 2019, 91, 15–21. DOI: https://doi.org/10.1016/j.diamond.2018.11.005
- 40 H. Zhou, H. J. Zhai, X. Zhi, Electrochim. Acta 2018, 290, 1–11. DOI: https://doi.org/10.1016/j.electacta.2018.09.039
- 41 X. Li, Q. Guo, W. Cao, Y. Li, B. Du, Q. Wei, Anal. Chem. 2014, 457, 59–64. DOI: https://doi.org/10.1016/j.ab.2014.04.017
- 42 N. F. Chiu, S. Y. Fan, C. D. Yang, T. Y. Huang, Biosens. Bioelectron. 2017, 89, 370–376. DOI: https://doi.org/10.1016/j.bios.2016.06.073
- 43 Y. Liu, J. Gong, W. Wu, Y. Fang, Q. Wang, H. Gu, Sens. Actuators, B 2016, 222, 588–597. DOI: https://doi.org/10.1016/j.snb.2015.08.101
- 44 Y. Li, J. Sun, J. Wang, C. Bian, J. Tong, Y. Li, S. Xia, Biochem. Eng. J. 2017, 123, 86–94. DOI: https://doi.org/10.1016/j.bej.2017.03.015
- 45 Q. Huang, S. Liu, K. Li, I. Hussain, F. Yao, G. Fu, J. Mater. Sci. Technol. 2017, 33, 821–826. DOI: https://doi.org/10.1016/j.jmst.2016.11.003
- 46 H. Zhang, L. Bin, J. Pan, Y. Qi, J. Shen, C. Gao, B. Van der Bruggen, J. Membr. Sci. 2017, 539, 128–137. DOI: https://doi.org/10.1016/j.memsci.2017.05.075
- 47 Y. Yuan, X. Gao, Y. Wei, X. Wang, J. Wang, Y. Zhang, C. Gao, Desalination 2017, 405, 29–39. DOI: https://doi.org/10.1016/j.desal.2016.11.024
- 48 Y. Li, J. Li, Y. Li, Y. Li, Y. Song, S. Niu, N. Li, Ultrason. Sonochem. 2018, 40, 798–807. DOI: https://doi.org/10.1016/j.ultsonch.2017.08.038
- 49 F. B. Peng, L. Y. Lu, H. L. Sun, Z. Y. Jiang, J. Membr. Sci. 2006, 281, 600–608. DOI: https://doi.org/10.1016/j.memsci.2006.04.031
- 50 S. Ravindra, V. Rajinikanth, A. F. Mulaba-Bafubiandi, V. S. Vallabhapurapu, Desalin. Water Treat. 2015, 57, 4920–4934. DOI: https://doi.org/10.1080/19443994.2014.999131
- 51 J. Li, L. Zhang, J. Gu, Y. Sun, X. Ji, RSC Adv. 2015, 5, 19859–19864. DOI: https://doi.org/10.1039/c4ra15482g
- 52 E. J. Flynn, D. A. Keane, P. M. Tabari, M. A. Morris, Sep. Purif. Technol. 2013, 118, 73–80. DOI: https://doi.org/10.1016/j.seppur.2013.06.034
- 53 Q. G. Zhang, Q. L. Liu, Z. Y. Jiang, Y. Chen, J. Membr. Sci. 2007, 287, 237–245. DOI: https://doi.org/10.1016/j.memsci.2006.10.041