Impact of Organic Solvents on Physicochemical Properties of Nanofiltration and Reverse-Osmosis Membranes
Corresponding Author
Katia Rezzadori
Federal University of Rio Grande do Sul, Institute of Food Science and Technology, Department of Food Technology, 91501-970 Porto Alegre, Brazil
Correspondence: Katia Rezzadori ([email protected]), Department of Food Technology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.Search for more papers by this authorFrederico M. Penha
University of São Paulo, Polytechnic School, Department of Chemical Engineering, Av. Prof. Luciano Gualberto, trav.3, n.380, 05508-010 São Paulo, São Paulo, Brazil
Search for more papers by this authorMariane C. Proner
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorGuilherme Zin
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorJosé C. C. Petrus
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorMarco Di Luccio
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorCorresponding Author
Katia Rezzadori
Federal University of Rio Grande do Sul, Institute of Food Science and Technology, Department of Food Technology, 91501-970 Porto Alegre, Brazil
Correspondence: Katia Rezzadori ([email protected]), Department of Food Technology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.Search for more papers by this authorFrederico M. Penha
University of São Paulo, Polytechnic School, Department of Chemical Engineering, Av. Prof. Luciano Gualberto, trav.3, n.380, 05508-010 São Paulo, São Paulo, Brazil
Search for more papers by this authorMariane C. Proner
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorGuilherme Zin
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorJosé C. C. Petrus
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorMarco Di Luccio
Federal University of Santa Catarina, Department of Chemical and Food Engineering, 88040-900 Florianopolis, Brazil
Search for more papers by this authorAbstract
Polymeric membranes subjected to the permeation of n-hexane were characterized and the influence of pretreatment with ethanol on the properties of the membranes was studied to assess membrane performance and stability. The results suggest that the selectivity of the membrane depends not only on the pore size, but also to a great extent on the interaction between solvent and polymer. An increase in membrane roughness and contact angle was observed for all membranes after pretreatment with ethanol and n-hexane permeation. Moreover, the surface free energy decreased after solvents exposure, indicating an increase in membrane surface hydrophobicity and polymer swelling. The studied membranes show feasibility of use for the recovery of solvents, if suitable process parameters are selected.
References
- 1 S. Kim, Y. M. Lee, Curr. Opin. Chem. Eng. 2013, 2, 238. DOI: https://doi.org/10.1016/j.coche.2013.03.006
- 2 C. M. Camelini, K. Rezzadori, S. Benedetti, M. C. Proner, L. Fogaça, A. A. Azambuja, A. J. Giachini, M. J. Rossi, J. C. C. Petrus, Appl. Microbiol. Biotechnol. 2013, 97, 9993. DOI: https://doi.org/10.1007/s00253-013-5241-y
- 3 L. R. Firman, N. A. Ochoa, J. Marchese, C. L. Pagliero, J. Membr. Sci. 2013, 431, 187. DOI: https://doi.org/10.1016/j.memsci.2012.12.040
- 4 G. Hurwitz, G. R. Guillen, E. M. V. Hoek, J. Membr. Sci. 2010, 349, 349. DOI: https://doi.org/10.1016/j.memsci.2009.11.063
- 5 D. E. Sachit, J. N. Veenstra, J. Membr. Sci. 2014, 453, 136. DOI: https://doi.org/10.1016/j.memsci.2013.10.051
- 6 F. M. Penha, K. Rezzadori, M. C. Proner, G. Zin, L. A. Fogaça, J. C. C. Petrus, J. V. De Oliveira, M. Di Luccio, J. Food Eng. 2015, 155, 79. DOI: https://doi.org/10.1016/j.jfoodeng.2015.01.020
- 7 I. M. Atadashi, M. K. Aroua, A. Abdul Aziz, N. M. Sulaiman, J. Membr. Sci. 2012, 421–422, 154. DOI: https://doi.org/10.1016/j.memsci.2012.07.006
- 8 X. Q. Cheng, Y. L. Zhang, Z. X. Wang, Z. H. Guo, Y. P. Bai, L. Shao, Adv. Polym. Technol. 2014, 33, 21455. DOI: https://doi.org/10.1002/adv.21455
- 9 B. Van der Bruggen, J. Geens, C. Vandecasteele, Chem. Eng. Sci. 2002, 57, 2511. DOI: https://doi.org/10.1016/S0009-2509(02)00125-2
- 10 M. G. Buonomenna, G. Golemme, J. C. Jansen, S.-H. Choi, J. Membr. Sci. 2011, 368, 144. DOI: https://doi.org/10.1016/j.memsci.2010.11.036
- 11 J. J. Torres, J. T. Arana, N. A. Ochoa, J. Marchese, C. Pagliero, Chem. Eng. Technol. 2018, 41, 253. DOI: https://doi.org/10.1002/ceat.201600257
- 12 P. Vandezande, L. E. M. Gevers, I. F. J. Vankelecom, Chem. Soc. Rev. 2008, 37, 365. DOI: https://doi.org/10.1039/B610848M
- 13 P. Marchetti, A. Butté, A. G. Livingston, J. Membr. Sci. 2013, 444, 101. DOI: https://doi.org/10.1016/j.memsci.2013.04.069
- 14 P. Marchetti, A. G. Livingston, J. Membr. Sci. 2015, 476, 530. DOI: https://doi.org/10.1016/j.memsci.2014.10.030
- 15 S. Darvishmanesh, J. Degrève, B. Van der Bruggen, Phys. Chem. Chem. Phys. 2010, 12, 13333. DOI: https://doi.org/10.1039/c0cp00230e
- 16 A. Rafe, S. M. A. Razavi, Desalination 2009, 236, 39. DOI: https://doi.org/10.1016/j.desal.2007.10.048
- 17 S. Darvishmanesh, A. Buekenhoudt, J. Degrève, B. Van der Bruggen, Sep. Purif. Technol. 2009, 70, 46. DOI: https://doi.org/10.1016/j.seppur.2009.08.011
- 18 J. Li, M. Wang, Y. Huang, B. Luo, Y. Zhang, Q. Yuan, RSC Adv. 2014, 4, 40740. DOI: https://doi.org/10.1039/c4ra04222k
- 19 J. Chau, P. Basak, J. Kaur, Y. Hu, K. K. Sirkar, Sep. Purif. Technol. 2018, 199, 233. DOI: https://doi.org/10.1016/j.seppur.2018.01.054
- 20 J. Chau, P. Basak, K. K. Sirkar, J. Membr. Sci. 2018, 563, 541. DOI: https://doi.org/10.1016/j.memsci.2018.05.076
- 21 A. Subramani, X. Huang, E. M. V. Hoek, J. Colloid Interface Sci. 2009, 336, 13.
- 22 E. F. Barbosa, L. P. Silva, J. Membr. Sci. 2012, 407, 128. DOI: https://doi.org/10.1016/j.jcis.2009.03.063
- 23 P. C. Y. Wong, Y.-N. Kwon, C. S. Criddle, J. Membr. Sci. 2009, 340, 117. DOI: https://doi.org/10.1016/j.memsci.2009.05.018
- 24 W. Yoshida, Y. Cohen, J. Membr. Sci. 2003, 215, 249. DOI: https://doi.org/10.1016/S0376-7388(03)00019-X
- 25
M. L. Huggins, J. Phys. Chem.
1951, 55, 619. DOI: https://doi.org/10.1021/j150487a027
10.1021/j150487a027 Google Scholar
- 26 C. Andecochea Saiz, S. Darvishmanesh, A. Buekenhoudt, B. Van der Bruggen, J. Membr. Sci. 2018, 546, 120. DOI: https://doi.org/10.1016/j.memsci.2017.10.016
- 27 R. Kopeć, M. Meller, W. Kujawski, J. Kujawa, Sep. Purif. Technol. 2013, 110, 63. DOI: https://doi.org/10.1016/j.seppur.2013.03.007
- 28 A. L. Carvalho, F. Maugeri, V. Silva, A. Hernández, L. Palacio, P. Pradanos, J. Mater. Sci. 2011, 46, 3356. DOI: https://doi.org/10.1007/s10853-010-5224-7
- 29 C. J. Van Oss, M. K. Chaudhury, R. J. Good, Chem. Rev. 1988, 88, 927. DOI: https://doi.org/10.1021/cr00088a006
- 30 J. H. Clint, A. C. Wicks, Int. J. Adhes. Adhes. 2001, 21, 267. DOI: https://doi.org/10.1016/S0143-7496(00)00029-4
- 31 H. W. Zan, C.-W. Chou, K.-H. Yen, Thin Solid Films 2008, 516, 2231. DOI: https://doi.org/10.1016/j.tsf.2007.08.003
- 32 M. Palencia, B. L. Rivas, E. Pereira, A. Hernández, P. Prádanos, J. Membr. Sci. 2009, 336, 128. DOI: https://doi.org/10.1016/j.memsci.2009.03.016
- 33 J. C. Jansen, S. Darvishmanesh, F. Tasselli, F. Bazzarelli, P. Bernardo, E. Tocci, K. Friess, A. Randova, E. Drioli, B. Van der Bruggen, J. Membr. Sci. 2013, 447, 107. DOI: https://doi.org/10.1016/j.memsci.2013.07.009
- 34 Y. Zhao, Q. Yuan, J. Membr. Sci. 2006, 280, 195. DOI: https://doi.org/10.1016/j.memsci.2006.01.026
- 35 W. Qing, X. Shi, W. Zhang, J. Wang, Y. Wu, P. Wang, C. Y. Tang, J. Membr. Sci. 2018, 564, 465. DOI: https://doi.org/10.1016/j.memsci.2018.07.035
- 36 C. A. Scholes, G. Q. Chen, G. W. Stevens, S. E. Kentish, J. Membr. Sci. 2010, 346, 208. DOI: https://doi.org/10.1016/j.memsci.2009.09.036
- 37 K. Rezzadori, F. M. Penha, M. C. Proner, G. Zin, J. C. C. Petrus, P. Prádanos, L. Palacio, A. Hernández, M. Di Luccio, J. Membr. Sci. 2015, 492, 478. DOI: https://doi.org/10.1016/j.memsci.2015.06.005
- 38 Y. Kim, D. Rana, T. Matsuura, W.-J. Chung, J. Membr. Sci. 2009, 338, 84. DOI: https://doi.org/10.1016/j.memsci.2009.04.017
- 39 P. E. Luner, E. Oh, Colloids Surf., A 2001, 181, 31. DOI: https://doi.org/10.1016/S0927-7757(00)00805-0
- 40 P. J. Flory, J. Am. Chem. Soc. 1954, 76, 2854. DOI: https://doi.org/10.1021/ja01639a090
- 41 S. Postel, C. Schneider, M. Wessling, J. Membr. Sci. 2016, 497, 47. DOI: https://doi.org/10.1016/j.memsci.2015.09.014
- 42 T. M. Aminabhavi, R. S. Munnolli, Polym. Int. 1993, 32, 61. DOI: https://doi.org/10.1002/pi.4990320111
- 43 G. C. Vebber, P. Pranke, C. N. Pereira, J. Appl. Polym. Sci. 2014, 131, 39696. DOI: https://doi.org/10.1002/app.39696