Stabilized Performance of Al-Decorated and Al/Mg Co-Decorated Spray-Dried CaO-Based CO2 Sorbents
Jian Sun
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorYuandong Yang
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorYafei Guo
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorCorresponding Author
Chuanwen Zhao
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Correspondence: Chuanwen Zhao ([email protected]), Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China; Wenqiang Liu ([email protected]), Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorJubing Zhang
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorCorresponding Author
Wenqiang Liu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China
Correspondence: Chuanwen Zhao ([email protected]), Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China; Wenqiang Liu ([email protected]), Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorPing Lu
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorJian Sun
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorYuandong Yang
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorYafei Guo
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorCorresponding Author
Chuanwen Zhao
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Correspondence: Chuanwen Zhao ([email protected]), Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China; Wenqiang Liu ([email protected]), Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorJubing Zhang
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorCorresponding Author
Wenqiang Liu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China
Correspondence: Chuanwen Zhao ([email protected]), Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China; Wenqiang Liu ([email protected]), Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorPing Lu
Nanjing Normal University, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, 78 Bancang Street, 210042 Nanjing, China
Search for more papers by this authorAbstract
The sharp loss-in-capacity in CO2 capture as a result of sintering is a major drawback for CaO-based sorbents used in the calcium looping process. The decoration of inert supports effectively stabilizes the cyclic CO2 capture performance of CaO-based sorbents via sintering mitigation. A range of Al-decorated and Al/Mg co-decorated CaO-based sorbents were synthesized via an easily scaled-up spray-drying route. The decoration of Al-based and Al/Mg-based supports efficiently enhanced the cyclic CO2 capture capability of CaO-based sorbents under severe testing conditions. The CO2 capture capacity losses of Al-decorated and Al/Mg co-decorated CaO-based sorbents were alleviated, representing more stable CO2 capture performance. The stabilized CO2 capture performance is mainly attributed to the formation of Ca12Al14O33, MgAl2O4, and MgO that act as the skeleton structures to mitigate the sintering of CaCO3 during carbonation/calcination cycles.
Supporting Information
Filename | Description |
---|---|
ceat201900012-sup-0001-misc_information.pdf399.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Z. Zhou, X. Liu, Y. Hu, Z. Liao, S. Cheng, M. Xu, Fuel 2018, 216, 356–363.
- 2 Y. Xu, X. Liu, H. Wang, Y. Zhang, J. Qi, M. Xu, Energy Fuels 2018, 33, 1518–1526.
- 3 R. S. Haszeldine, Science 2009, 325 (5948), 1647–1652.
- 4 D. Feng, Y. Zhao, Y. Zhang, H. Xu, L. Zhang, S. Sun, Fuel 2018, 212, 523–532.
- 5 K. S. Lackner, Science 2003, 300 (5626), 1677.
- 6 Y. Guo, C. Zhao, J. Sun, W. Li, P. Lu, Fuel 2018, 215, 735–743.
- 7 Y. Yang, W. Liu, Y. Hu, J. Sun, X. Tong, Q. Chen, Q. Li, Chem. Eng. J. 2018, 353, 92–99.
- 8 M. Zhao, A. I. Minett, A. T. Harris, Energy Environ. Sci. 2013, 6 (1), 25–40.
- 9 T. Song, L. Shen, Int. J. Greenhouse Gas Control 2018, 76, 92–110.
- 10 M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. MacDowell, J. R. Fernández, M.-C. Ferrari, R. Gross, J. P. Hallett, Energy Environ. Sci. 2014, 7 (1), 130–189.
- 11 M. Bui et al., Energy Environ. Sci. 2018, 11 (5), 1062–1176.
- 12 G. Itskos, P. Grammelis, F. Scala, H. Pawlak-Kruczek, A. Coppola, P. Salatino, E. Kakaras, Appl. Energy 2013, 108, 373–382.
- 13 Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao, P. Lu, Fuel 2019, 243, 298–305.
- 14 N. Chalermwat, R. Rattanaprapanporn, B. Chalermsinsuwan, S. Poompradub, Chem. Eng. Technol. 2018, 41 (3), 428–435.
- 15 J. Sun, Y. Yang, Y. Guo, Y. Xu, W. Li, C. Zhao, W. Liu, P. Lu, Fuel 2018, 222, 334–342.
- 16 C. Qin, D. He, Z. Zhang, L. Tan, J. Ran, Chem. Eng. J. 2018, 334, 2238–2249.
- 17 W. Liu, H. An, C. Qin, J. Yin, G. Wang, B. Feng, M. Xu, Energy Fuels 2012, 26 (5), 2751–2767.
- 18 J. Sun, W. Liu, Y. Hu, J. Wu, M. Li, X. Yang, W. Wang, M. Xu, Chem. Eng. J. 2016, 285, 293–303.
- 19 Y. Hu, W. Liu, Y. Yang, J. Sun, Z. Zhou, M. Xu, Chem. Eng. Technol. 2017, 40 (12), 2322–2328.
- 20 Y. Xu, H. Ding, C. Luo, Y. Zheng, Y. Xu, X. Li, Z. Zhang, C. Shen, L. Zhang, Chem. Eng. J. 2018, 334, 2520–2529.
- 21 X. Ma, Y. Li, L. Duan, E. Anthony, H. Liu, Appl. Energy 2018, 225, 402–412.
- 22 W. Liu, B. Feng, Y. Wu, G. Wang, J. Barry, J. O. C. Diniz da Costa, Environ. Sci. Technol. 2010, 44 (8), 3093–3097.
- 23 J. Sun, W. Liu, M. Li, X. Yang, W. Wang, Y. Hu, H. Chen, X. Li, M. Xu, Energy Fuels 2016, 30 (8), 6597–6605.
- 24 M. Sayyah, Y. Lu, R. I. Masel, K. S. Suslick, ChemSusChem 2013, 6 (1), 193–198.
- 25 Y. Li, C. Zhao, H. Chen, C. Liang, L. Duan, W. Zhou, Fuel 2009, 88 (4), 697–704.
- 26 V. Manovic, E. J. Anthony, Environ. Sci. Technol. 2008, 42 (11), 4170–4174.
- 27 Y. Xu, H. Ding, C. Luo, Y. Zheng, X. Li, Y. Xu, Z. Zhang, W. Zhao, L. Zhang, Chem. Eng. Technol. 2018, 41 (5), 956–963.
- 28 X. Ma, Y. Li, X. Yan, W. Zhang, J. Zhao, Z. Wang, Chem. Eng. J. 2019, 361, 235–244.
- 29 B. González, J. Blamey, M. McBride-Wright, N. Carter, D. Dugwell, P. Fennell, J. C. Abanades, Energy Procedia 2011, 4, 402–409.
- 30 C. Luo, Y. Zheng, N. Ding, Q. Wu, G. Bian, C. Zheng, Ind. Eng. Chem. Res. 2010, 49 (22), 11778–11784.
- 31 M. Zhang, Y. Peng, Y. Sun, P. Li, J. Yu, Fuel 2013, 111, 636–642.
- 32 H. R. Radfarnia, A. Sayari, Chem. Eng. J. 2015, 262, 913–920.
- 33 M. Broda, C. R. Müller, Adv. Mater. 2012, 24 (22), 3059–3064.
- 34 K. Wang, Z. Yin, P. Zhao, D. Han, X. Hu, G. Zhang, Energy Fuels 2015, 29 (7), 4428–4435.
- 35 A. Prathap, M. Shaijumon, K. M. Sureshan, Chem. Commun. 2016, 52, 1342–1345.
- 36 Y. Li, C. Zhao, Q. Ren, L. Duan, H. Chen, X. Chen, Fuel Process. Technol. 2009, 90 (6), 825–834.
- 37 S. Wu, Y. Zhu, Ind. Eng. Chem. Res. 2010, 49 (6), 2701–2706.
- 38 W. Peng, Z. Xu, C. Luo, H. Zhao, Environ. Sci. Technol. 2015, 49 (13), 8237–8245.
- 39 Y. Wang, W. Zhang, R. Li, W. Duan, B. Liu, Energy Fuels 2016, 30, 1248–1255.
- 40 A. H. Soleimanisalim, M. H. Sedghkerdar, D. Karami, N. Mahinpey, Ind. Eng. Chem. Res. 2017, 56 (18), 5395–5402.
- 41 Y. Hu, W. Liu, H. Chen, Z. Zhou, W. Wang, J. Sun, X. Yang, X. Li, M. Xu, Fuel 2016, 181, 199–206.
- 42 P. Lan, S. Wu, Fuel 2015, 143, 9–15.
- 43 W. Liu, J. Yin, C. Qin, B. Feng, M. Xu, Environ. Sci. Technol. 2012, 46 (20), 11267–11272.
- 44 M. Sayyah, B. R. Ito, M. Rostam-Abadi, Y. Lu, K. S. Suslick, RSC Adv. 2013, 3 (43), 19872–19875.
- 45 A. Ebrahimi, M. Arab, M. Saffari, A. I. Minett, T. Langrish, Chem. Eng. J. 2016, 291, 1–11.
- 46 Y. Song, G. Ji, X. Zhao, X. He, X. Cui, M. Zhao, Energy Fuels 2017, 31, 12521–12529.
- 47 J. Sun, C. Liang, W. Wang, W. Liu, Energy Fuels 2017, 31, 14070–14078.
- 48 A. Coppola, F. Scala, G. Itskos, P. Grammelis, H. Pawlak-Kruczek, S. K. Antiohos, P. Salatino, F. Montagnaro, Energy Fuels 2013, 27 (10), 6048–6054.
- 49 S. Tian, J. Jiang, F. Yan, K. Li, X. Chen, Environ. Sci. Technol. 2015, 49 (12), 7464–7472.
- 50 L. Li, D. L. King, Z. Nie, X. S. Li, C. Howard, Energy Fuels 2010, 24 (6), 3698–3703.
- 51 J. Guo, H. Lou, H. Zhao, X. Wang, X. Zheng, Mater. Lett. 2004, 58 (12–13), 1920–1923.
- 52 W. Liu, N. W. Low, B. Feng, G. Wang, J. C. Diniz da Costa, Environ. Sci. Technol. 2009, 44 (2), 841–847.
- 53 J. Sun, W. Liu, H. Chen, Y. Zhang, Y. Hu, W. Wang, X. Li, M. Xu, Proc. Combust. Inst. 2017, 36 (3), 3977–3984.
- 54 J. Sun, W. Liu, W. Wang, Y. Hu, X. Yang, H. Chen, Y. Peng, M. Xu, Energy Fuels 2016, 30 (11), 9605–9612.
- 55 W. Peng, Z. Xu, H. Zhao, Fuel 2016, 170, 226–234.
- 56 C. Qin, H. Du, L. Liu, J. Yin, B. Feng, Energy Fuels 2013, 28 (1), 329–339.
- 57 J. Sun, C. Liang, X. Tong, Y. Guo, W. Li, C. Zhao, J. Zhang, P. Lu, Fuel 2019, 239, 1046–1054.