Water Flux Reduction in Microfiltration Membranes: A Pore Network Study
S. Majid Abdoli
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Search for more papers by this authorCorresponding Author
Sirous Shafiei
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Correspondence: Sirous Shafiei ([email protected]), Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran.Search for more papers by this authorAmir Raoof
Utrecht University, Multiscale Porous Media Laboratory, Department of Earth Science, 3584 CC Utrecht, The Netherlands
Search for more papers by this authorAmanollah Ebadi
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Search for more papers by this authorYoones Jafarzadeh
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Search for more papers by this authorHamed Aslannejad
Utrecht University, Multiscale Porous Media Laboratory, Department of Earth Science, 3584 CC Utrecht, The Netherlands
Search for more papers by this authorS. Majid Abdoli
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Search for more papers by this authorCorresponding Author
Sirous Shafiei
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Correspondence: Sirous Shafiei ([email protected]), Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran.Search for more papers by this authorAmir Raoof
Utrecht University, Multiscale Porous Media Laboratory, Department of Earth Science, 3584 CC Utrecht, The Netherlands
Search for more papers by this authorAmanollah Ebadi
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Search for more papers by this authorYoones Jafarzadeh
Sahand University of Technology, Faculty of Chemical Engineering, P.O. Box, 51335-1996 Tabriz, Iran
Search for more papers by this authorHamed Aslannejad
Utrecht University, Multiscale Porous Media Laboratory, Department of Earth Science, 3584 CC Utrecht, The Netherlands
Search for more papers by this authorAbstract
A 3D pore network model was developed to simulate the removal of dextran from water. Advanced scanning electron microscopy combined with focused ion beam analysis was used to obtain the sizes of the different pore networks that represent the microscopic structure of a porous membrane. The required input transport parameters for modeling were obtained by performing dynamic experiments on dextran adsorption within the pores of a polysulfone membrane. The simulated flux changes demonstrated a good agreement with the experimental data showing that such a model can be used to study the effects of various parameters during the process. Specifically, the results showed an increase in the applied pressure, decreased membrane thickness, increased pore size, while small sizes of contaminant molecules lead to a rise of the flux passing through the membrane.
Supporting Information
Filename | Description |
---|---|
ceat201800130-sup-0001-misc_information.mp410.9 MB | Supplementary Information (video): Sliceview of the membrane |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 D. Mara, Domestic Wastewater Treatment in Developing Countries, 1st ed., Routledge, London 2004.
- 2 T. Peters, Chem. Eng. Technol. 2010, 33, 1233–1240. DOI: 10.1002/ceat.201000139
- 3 A. Behboudi, Y. Jafarzadeh, R. Yegani, Chem. Eng. Res. Des. 2016, 114, 96–107. DOI: 10.1016/j.cherd.2016.07.027
- 4 J. Zeng, L. Zheng, X. Sun, Q. He, Chem. Eng. Technol. 2011, 34, 718–726. DOI: 10.1002/ceat.201000493
- 5 T. Coskun, A. Yildirim, C. Balcik, N. Manav Demir, E. Debik, Clean: Soil, Air, Water 2013, 41, 463–468. DOI: 10.1002/clen.201200075
- 6 A. Ullah, R. G. Holdich, M. Naeem, S. W. Khan, V. M. Starov, Chem. Eng. Res. Des. 2014, 92, 2775–2781. DOI: 10.1016/j.cherd.2014.02.017
- 7 A. Ullah, R. G. Holdich, M. Naeem, V. M. Starov, J. Membr. Sci. 2012, 421–422, 69–74. DOI: 10.1016/j.memsci.2012.06.040
- 8 B. Teychene, G. Collet, H. Gallard, J. Membr. Sci. 2016, 505, 185–193. DOI: 10.1016/j.memsci.2016.01.039
- 9 N. Hilal, O. O. Ogunbiyi, N. J. Miles, R. Nigmatullin, Sep. Sci. Technol. 2005, 40, 1957–2005. DOI: 10.1081/SS-200068409
- 10 P. Le-Clech, V. Chen, T. A. G. Fane, J. Membr. Sci. 2006, 284, 17–53. DOI: 10.1016/j.memsci.2006.08.019
- 11 Z. Zhou, S. Rajabzadeh, A. R. Shaikh, Y. Kakihana, W. Ma, H. Matsuyama, J. Membr. Sci. 2016, 514, 537–546. DOI: 10.1016/j.memsci.2016.05.008
- 12 A. Behboudi, Y. Jafarzadeh, R. Yegani, J. Membr. Sci. 2017, 534, 18–24. DOI: 10.1016/j.memsci.2017.04.011
- 13 N. Riyasudheen, M. J. Paul, A. Sujith, Chem. Eng. Technol. 2014, 37, 1021–1029. DOI: 10.1002/ceat.201300397
- 14 S.-Y. Suen, M. R. Etzel, Chem. Eng. Sci. 1992, 47, 1355–1364. DOI: 10.1016/0009-2509(92)80281-G
- 15 W. Shi, F. Zhang, G. Zhang, J. Chromatogr. A 2005, 1081, 156–162.
- 16 C. Boi, S. Dimartino, G. C. Sarti, J. Chromatogr. A 2007, 1162, 24–33.
- 17 A. O. Imdakm, M. Sahimi, Chem. Eng. Sci. 1991, 46, 1977–1993.
- 18 G. Jonsson, Desalination 1980, 35, 21–38.
- 19
A. U. Krupp, I. M. Griffiths, C. P. Please, Proc. R. Soc. A
2017, 473, 20160948. DOI: 10.1098/rspa.2016.0948
10.1098/rspa.2016.0948 Google Scholar
- 20 M. Sahimi, T. T. Tsotsis, Phys. B 2003, 338, 291–297.
- 21 A. M. Vieira-Linhares, N. A. Seaton, Chem. Eng. Sci. 2003, 58, 5251–5256.
- 22 F. Chen, R. Mourhatch, T. T. Tsotsis, M. Sahimi, J. Membr. Sci. 2008, 315, 48–57. DOI: 10.1016/j.memsci.2008.02.005
- 23 N. Rajabbeigi, B. Elyassi, T. T. Tsotsis, M. Sahimi, J. Membr. Sci. 2009, 335, 5–12. DOI: 10.1016/j.memsci.2009.02.033
- 24 N. Rajabbeigi, T. T. Tsotsis, M. Sahimi, J. Membr. Sci. 2009, 345, 323–330.
- 25 R. Mourhatch, T. T. Tsotsis, M. Sahimi, J. Membr. Sci. 2010, 356, 138–146.
- 26 G. Bolton, D. LaCasse, R. Kuriyel, J. Membr. Sci. 2006, 277, 75–84. DOI: 10.1016/j.memsci.2004.12.053
- 27 H. P. Grace, AIChE J. 1956, 2, 307–315. DOI: 10.1002/aic.690020307
- 28 J. Hermia, Trans. Inst. Chem. Eng. 1982, 60, 183–187.
- 29 A. Grenier, M. Meireles, P. Aimar, P. Carvin, Chem. Eng. Res. Des. 2008, 86, 1281–1293. DOI: 10.1016/j.cherd.2008.06.005
- 30 E. M. Tracey, R. H. Davis, J. Colloid Interface Sci. 1994, 167, 104–116. DOI: 10.1006/jcis.1994.1338
- 31 C.-C. Ho, A. L. Zydney, J. Colloid Interface Sci. 2000, 232, 389–399. DOI: 10.1006/jcis.2000.7231
- 32 C. Duclos-Orsello, W. Li, C. C. Ho, J. Membr. Sci. 2006, 280, 856–866. DOI: 10.1016/j.memsci.2006.03.005
- 33 U. Beuscher, Chem. Eng. Technol. 2010, 33, 1377–1381. DOI: 10.1002/ceat.201000123
- 34 Y. Zhou, Z. Zhu, Z. Wang, X. Zhang, K. Gao, L. Liu, L. Cheng, J. Chem. Technol. Biotechnol. 2016, 91, 1082–1092. DOI: 10.1002/jctb.4688
- 35 I. M. Griffiths, A. Kumar, P. S. Stewart, J. Colloid Interface Sci. 2014, 432, 10–18. DOI: 10.1016/j.jcis.2014.06.021
- 36 K. Nakamura, K. Matsumoto, J. Chem. Eng. Jpn. 1998, 31, 536–544.
- 37 F. Martinez, A. Martin, P. Pradanos, J. I. Calvo, L. Palacio, A. Hernandez, J. Colloid Interface Sci. 2000, 221, 254–261.
- 38 M. Taniguchi, J. E. Kilduff, G. Belfort, Environ. Sci. Technol. 2003, 37, 1676–1683.
- 39 A. Raoof, S. Majid Hassanizadeh, Transp. Porous Media 2010, 81, 391–407. DOI: 10.1007/s11242-009-9412-3
- 40 L. M. Bryntesson, J. Chromatogr. A 2002, 945, 103–115. DOI: 10.1016/S0021-9673(01)01485-6
- 41 M. Cappelezzo, C. A. Capellari, S. H. Pezzin, L. A. F. Coelho, J. Chem. Phys. 2007, 126 (22), 224516. DOI: 10.1063/1.2738063
- 42 K. A. Granath, B. E. Kvist, J. Chromatogr. A 1967, 28, 69–81.
- 43 S. S. Madaeni, E. Salehi, Chem. Eng. J. 2009, 150, 114–121. DOI: 10.1016/j.cej.2008.12.005
- 44 Q. Xiong, A. P. Jivkov, J. R. Yates, Microporous Mesoporous Mater. 2014, 185, 51–60. DOI: 10.1016/j.micromeso.2013.09.038
- 45 C. Z. Qin, S. M. Hassanizadeh, Transp. Porous Media 2015, 110, 345–367. DOI: 10.1007/s11242-015-0546-1
- 46 H. Aslannejad, S. M. Hassanizadeh, A. Raoof, D. A. M. de Winter, N. Tomozeiu, M. T. van Genuchten, Chem. Eng. Sci. 2017, 160, 275–280. DOI: 10.1016/j.ces.2016.11.021
- 47 M. E. Hamzehie, S. Mazinani, F. Davardoost, A. Mokhtare, H. Najibi, B. Van der Bruggen, S. Darvishmanesh, J. Nat. Gas Sci. Eng. 2014, 21, 19–25. DOI: 10.1016/j.jngse.2014.07.022
- 48
Encyclopedia of Membranes (Eds: E. Drioli, L. Giorno), 1st ed., Springer, Berlin
2016. DOI: 10.1007/978-3-662-44324-8
10.1007/978‐3‐662‐44324‐8 Google Scholar
- 49 S. C. Low, W. X. Jin, M. Tan, Desalination 2004, 167, 217–226. DOI: 10.1016/j.desal.2004.06.131
- 50 K. J. Hwang, C. Y. Liao, K. L. Tung, Desalination 2008, 234, 16–23. DOI: 10.1016/j.desal.2007.09.065
- 51 A. Ullah, V. M. Starov, M. Naeem, R. G. Holdich, J. Membr. Sci. 2011, 382, 271–277. DOI: 10.1016/j.memsci.2011.08.017
- 52 C. F. Lin, Y. J. Huang, O. J. Hao, Water Res. 1999, 33, 1252–1264. DOI: 10.1016/S0043-1354(98)00322-4
- 53 J. Hwang, S. Koo, J. Kim, A. Higuchi, T. Tak, J. Appl. Polym. Sci. 1996, 60, 1343–1348.
- 54 S. S. Madaeni, A. H. Taheri, Chem. Eng. Technol. 2011, 34, 1328–1334. DOI: 10.1002/ceat.201000177
- 55 C. Y. Lai, A. Groth, S. Gray, M. Duke, Chem. Eng. J. 2015, 267, 73–85. DOI: 10.1016/j.cej.2014.12.036
- 56 P. Radovanovic, S. W. Thiel, S. T. Hwang, J. Membr. Sci. 1992, 65, 213–229. DOI: 10.1016/0376-7388(92)87024-R
- 57 I. Kim, K. Lee, J. Appl. Polym. Sci. 2003, 89, 2562–2566.
- 58 C. A. Koval, T. Spontarelli, P. Thoen, R. D. Noble, R. D. Noble, Ind. Eng. Chem. Res. 1992, 31, 1116–1122. DOI: 10.1021/ie00004a021