Enhancing the CO2 Separation Performance of Matrimid 5218 Membranes for CO2/CH4 Binary Mixtures
Corresponding Author
Roberto Castro-Muñoz
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Correspondence: Roberto Castro-Muñoz ([email protected]), University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.Search for more papers by this authorVlastimil Fíla
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Search for more papers by this authorMohd Zamidi Ahmad
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Search for more papers by this authorCorresponding Author
Roberto Castro-Muñoz
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Correspondence: Roberto Castro-Muñoz ([email protected]), University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.Search for more papers by this authorVlastimil Fíla
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Search for more papers by this authorMohd Zamidi Ahmad
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Search for more papers by this authorAbstract
The effect of CO2-philic additive polyethylene glycol (PEG) 200 in Matrimid 5218 on the separation performance of prepared membranes was evaluated in a binary gas mixture. Matrimid/PEG 200 flat-sheet blended membranes with low PEG concentrations were prepared by the dense film-casting method. Pure Matrimid and blended membranes were characterized by FTIR spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and permeation measurements. The addition of 4–5 % of PEG enhanced considerably the CO2 permeability of the Matrimid matrix. The best formulation, Matrimid/PEG 200 (96/4), showed in comparison to pure Matrimid a more than threefold increase in CO2 permeability and an increase in separation factor of about 40 %.
References
- 1 M. J. C. Ordoñez, K. J. Balkus, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2010, 361, 28–37. DOI: https://doi.org/10.1016/j.memsci.2010.06.017
- 2 R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, J. Membr. Sci. 2013, 447, 387–394. DOI: https://doi.org/10.1016/j.memsci.2013.07.057
- 3 N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, C. Klaysom, Chem. Eng. Technol. 2018, 41 (2), 211–223. DOI: https://doi.org/10.1002/ceat.201700406
- 4 F. Karamouz, H. Maghsoudi, R. Yegani, Chem. Eng. Technol. 2018, 41 (9), 1767–1775. DOI: https://doi.org/10.1002/ceat.201800087
- 5 V. Martin-Gil, M. Z. Ahmad, R. Castro-Muñoz, V. Fila, Sep. Purif. Rev. 2018, 1–27. DOI: https://doi.org/10.1080/15422119.2018.1532911
- 6
L. N. Yang, Z. Z. Song, Q. W. He, in Capture and Utililization of Carbon Dioxide with Polyethylene Glycol (Eds: L. N. Yan, Z. Z. Song, Q. W. He), Springer, Cham
2012.
10.1007/978-3-642-31268-7 Google Scholar
- 7 A. I. Escudero, S. Espatolero, L. M. Romeo, Int. J. Greenhouse Gas Control 2016, 45, 118–129. DOI: https://doi.org/10.1016/j.ijggc.2015.12.018
- 8 R. Castro-Muñoz, V. Fíla, Membranes 2018, 8, 30. DOI: https://doi.org/10.3390/membranes8020030
- 9 A. C. Comer, D. S. Kalika, B. W. Rowe, B. D. Freeman, D. R. Paul, Polymer (Guildford, England) 2009, 50, 891–897. DOI: https://doi.org/10.1016/j.polymer.2008.12.013
- 10 T. Rodenas, M. Van Dalen, E. García-Pérez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, J. Gascon, Adv. Funct. Mater. 2014, 24, 249–256. DOI: https://doi.org/10.1002/adfm.201203462
- 11 R. Castro-Muñoz, V. Martin-Gil, M. Z. Ahmad, V. Fíla, Chem. Eng. Commun. 2018, 205, 161–196. DOI: https://doi.org/10.1080/00986445.2017.1378647
- 12 W. Yave, A. Car, S. S. Funari, S. P. Nunes, K. V. Peinemann, Macromolecules 2010, 43, 326–333. DOI: https://doi.org/10.1021/ma901950u
- 13 T. Khosravi, M. Omidkhah, RSC Adv. 2015, 5, 12849–12859. DOI: https://doi.org/10.1039/C4RA14168G
- 14 H. Y. Zhao, Y. M. Cao, X. L. Ding, M. Q. Zhou, J. H. Liu, Q. Yuan, J. Membr. Sci. 2008, 320, 179–184. DOI: https://doi.org/10.1016/j.memsci.2008.03.070
- 15 A. Brunetti, F. Scura, G. Barbieri, E. Drioli, J. Membr. Sci. 2010, 359, 115–125. DOI: https://doi.org/10.1016/j.memsci.2009.11.040
- 16 R. Xing, W. S. W. Ho, J. Taiwan Inst. Chem. Eng. 2009, 40, 654–662. DOI: https://doi.org/10.1016/j.jtice.2009.05.004
- 17 M. Loloei, Greenhouse Gases Sci. Technol. 2015, 5, 1–15. DOI: https://doi.org/10.1002/ghg
- 18 S. Shahid, K. Nijmeijer, J. Membr. Sci. 2014, 470, 166–177. DOI: https://doi.org/10.1016/j.memsci.2014.07.034
- 19 P. Hrabánek, A. Zikánová, B. Bernauer, V. Fíla, M. Kočiřík, Desalination 2009, 245, 437–443. DOI: https://doi.org/10.1016/j.desal.2009.02.006
- 20 M. L. Cecopieri-Gomez, J. Palacios-Alquisira, J. M. Dominguez, J. Membr. Sci. 2007, 293, 53–65. DOI: https://doi.org/10.1016/j.memsci.2007.01.034
- 21 M. Z. Ahmad, H. Pelletier, V. Martin-Gil, R. Castro-Muñoz, V. Fila, Membranes 2018, 8 (3), 67. DOI: https://doi.org/10.3390/membranes8030067
- 22 T. Visser, N. Masetto, M. Wessling, J. Membr. Sci. 2007, 306, 16–28. DOI: https://doi.org/10.1016/j.memsci.2007.07.048
- 23 O. C. David, D. Gorri, A. Urtiaga, I. Ortiz, J. Membr. Sci. 2011, 378, 359–368. DOI: https://doi.org/10.1016/j.memsci.2011.05.029
- 24
O. C. David, D. Gorri, K. Nijmeijer, I. Ortiz, A. Urtiaga, Procedia Eng.
2012, 44, 1117–1118. DOI: https://doi.org/10.1016/j.proeng.2012.08.696
10.1016/j.proeng.2012.08.696 Google Scholar
- 25 G. Dong, H. Li, V. Chen, J. Membr. Sci. 2011, 369, 206–220. DOI: https://doi.org/10.1016/j.memsci.2010.11.064
- 26 A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, J. Membr. Sci. 1999, 155, 67–78. DOI: https://doi.org/10.1016/S0376-7388(98)00299-3
- 27 Y. Zhang, K. J. Balkus, I. H. Musselman, J. P. Ferraris, J. Membr. Sci. 2008, 325, 28–39. DOI: https://doi.org/10.1016/j.memsci.2008.04.063
- 28 A. L. Khan, X. Li, I. F. J. Vankelecom, J. Membr. Sci. 2011, 380, 55–62. DOI: https://doi.org/10.1016/j.memsci.2011.06.030
- 29 H. Lin, B. D. Freeman, J. Membr. Sci. 2004, 239, 105–117. DOI: https://doi.org/10.1016/j.memsci.2003.08.031
- 30 A. Ebadi Amooghin, M. Omidkhah, H. Sanaeepur, A. Kargari, J. Energy Chem. 2016, 25, 450–462. DOI: https://doi.org/10.1016/j.jechem.2016.02.004
- 31 X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Interfaces 2015, 7, 5528–5537. DOI: https://doi.org/10.1021/acsami.5b00106
- 32
A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, J. Polym. Sci. Part B: Polym. Phys.
1998, 36, 1547–1556. DOI: https://doi.org/10.1002/(SICI)1099-0488(19980715)36:9<1547::AID-POLB12>3.0.CO;2-5
10.1002/(SICI)1099-0488(19980715)36:9<1547::AID-POLB12>3.0.CO;2-5 CAS Web of Science® Google Scholar
- 33 T. M. Sridhar, S. Veerapur, R. S. Patil, M. B. Gudasi, K. B. Aminabhavi, J. Appl. Polym. Sci. 2007, 106, 1585–1594. DOI: https://doi.org/10.1002/app.26306
- 34 W. F. Yong, F. Y. Li, Y. C. Xiao, P. Li, K. P. Pramoda, Y. W. Tong, T. S. Chung, J. Membr. Sci. 2012, 407–408, 47–57. DOI: https://doi.org/10.1016/j.memsci.2012.03.038
- 35 W. F. Yong, F. Y. Li, Y. C. Xiao, T. S. Chung, Y. W. Tong, J. Membr. Sci. 2013, 443, 156–169. DOI: https://doi.org/10.1016/j.memsci.2013.04.037
- 36 S. S. Hosseini, T. S. Chung, J. Membr. Sci. 2009, 328, 174–185. DOI: https://doi.org/10.1016/j.memsci.2008.12.005
- 37 V. Martin-Gil, A. Lopez, P. Hrabanek, R. Mallada, I. F. J. Vankelecom, V. Fila, J. Membr. Sci. 2017, 523, 24–35. DOI: https://doi.org/10.1016/j.memsci.2016.09.041
- 38 A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, J. Gascon, Adv. Funct. Mater. 2016, 26, 3154–3163. DOI: https://doi.org/10.1002/adfm.201505352
- 39 M. Loloei, M. Omidkhah, A. Moghadassi, A. E. Amooghin, Int. J. Greenhouse Gas Control 2015, 39, 225–235. DOI: https://doi.org/10.1016/j.ijggc.2015.04.016
- 40 J. O. Hsieh, K. J. Balkus, J. P. Ferraris, I. H. Musselman, Microporous Mesoporous Mater. 2014, 196, 165–174. DOI: https://doi.org/10.1016/j.micromeso.2014.05.006
- 41 R. Castro-Muñoz, V. Fíla, V. Martin-Gil, C. Muller, Sep. Purif. Technol. 2019, 210, 553–562. DOI: https://doi.org/10.1016/j.seppur.2018.08.046
- 42 F. Dorosti, M. Omidkhah, R. Abedini, Chem. Eng. Res. Des. 2014, 92, 2439–2448. DOI: https://doi.org/10.1016/j.cherd.2014.02.018
- 43 L. He, R. Xue, D. Yang, Y. Liu, R. Song, Chin. J. Polym. Sci. 2009, 27, 501. DOI: https://doi.org/10.1142/S0256767909004175
- 44 H. Lin, B. D. Freeman, J. Mol. Struct. 2005, 739, 57–74. DOI: https://doi.org/10.1016/j.molstruc.2004.07.045
- 45 H. Lin, B. D. Freeman, Macromolecules 2006, 38, 8394–8407. DOI: https://doi.org/10.1021/ma051686o
- 46 F. Aziz, A. F. Ismail, Sep. Purif. Technol. 2010, 73, 421–428. DOI: https://doi.org/10.1016/j.seppur.2010.05.002
- 47 J. Zhang, F. Han, X. Wei, L. Shui, H. Gong, P. Zhang, Ind. Eng. Chem. Res. 2010, 49, 2025–2030. DOI: https://doi.org/10.1021/ie9014759
- 48 Y. Zhang, I. H. Musselman, J. P. Ferraris, K. J. Balkus, J. Membr. Sci. 2008, 313, 170–181. DOI: https://doi.org/10.1016/j.memsci.2008.01.005