Simple Procedure to Estimate Mass Transfer Coefficients from Uptake Curves on Activated Carbons
Rafael Magalhães Siqueira
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorEnrique Vilarrasa-García
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorAntônio Eurico Belo Torres
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorDiana Cristina Silva de Azevedo
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorCorresponding Author
Moisés Bastos-Neto
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Correspondence: Moisés Bastos-Neto ([email protected]), Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil.Search for more papers by this authorRafael Magalhães Siqueira
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorEnrique Vilarrasa-García
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorAntônio Eurico Belo Torres
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorDiana Cristina Silva de Azevedo
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Search for more papers by this authorCorresponding Author
Moisés Bastos-Neto
Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil
Correspondence: Moisés Bastos-Neto ([email protected]), Universidade Federal do Ceará, Department of Chemical Engineering, Campus do Pici, 60455-760 Fortaleza, Brasil.Search for more papers by this authorAbstract
A method based on the linear driving force (LDF) approximation is described to estimate the mass transfer coefficient of molecules adsorbing onto microporous carbons, by using independently measured uptake data. This parameter was determined from uptake curves derived from pressure increments during the measurement of isotherm data. To validate the method, simulations for batch uptake were performed and compared to the experimental data in order to obtain the values for the LDF constants. Such values were applied to predict breakthrough curves and compared to experimental data. The proposed method to estimate the LDF coefficient can be adequate to obtain a more physically meaningful value of the mass transfer coefficient.
Supporting Information
Filename | Description |
---|---|
ceat201800091-sup-0001-misc_information.pdf690.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Y. J. Kim, Y. S. Nam, Y. T. Kang, Energy 2015, 91, 732–741. DOI: 10.1016/j.energy.2015.08.086
- 2 D.-K. Moon, Y. Park, S.-H. Kim, M. Oh, C.-H. Lee, Sep. Purif. Technol. 2017, 181, 95–106. DOI: 10.1016/j.seppur.2017.03.015
- 3 R. Leyva-Ramos, R. Ocampo-Perez, J. Mendoza-Barron, Chem. Eng. J. 2012, 183, 141–151. DOI: 10.1016/j.cej.2011.12.046
- 4 A. K. Rajagopalan, A. M. Avila, A. Rajendran, Int. J. Greenhouse Gas Control 2016, 46, 76–85. DOI: 10.1016/j.ijggc.2015.12.033
- 5 E. Glueckauf, J. I. Coates, J. Chem. Soc. 1947, 1308–1314.
- 6 S. I. Nakao, M. Suzuki, J. Chem. Eng. Jpn. 1983, 16 (2), 114–119.
- 7 D. Friedrich, E. Mangano, S. Brandani, Chem. Eng. Sci. 2015, 126, 616–624. DOI: 10.1016/j.ces.2014.12.062
- 8 J. Kärger, Adsorption 2003, 9, 29–35.
- 9
H. Jobic, H. Paoli, A. Méthivier, G. Ehlers, J. Kärger, C. Krause, Microporous Mesoporous Mater.
2003, 59 (2–3), 113–121. DOI: 10.1016/s1387-1811(03)00291-9
10.1016/s1387‐1811(03)00291‐9 Google Scholar
- 10 D. D. Do, K. Wang, Carbon 1998, 36 (10), 1539–1554.
- 11 J. C. Knox, A. D. Ebner, M. D. LeVan, R. F. Coker, J. A. Ritter, Ind. Eng. Chem. Res. 2016, 55 (16), 4734–4748. DOI: 10.1021/acs.iecr.6b00516
- 12 F. V. S. Lopes, C. A. Grande, A. E. Rodrigues, Chem. Eng. Sci. 2011, 66 (3), 303–317. DOI: 10.1016/j.ces.2010.10.034
- 13 J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea, C. A. Grande, Ind. Eng. Chem. Res. 2014, 53 (40), 15414–15426. DOI: 10.1021/ie403744u
- 14 M. Bastos-Neto, A. Moeller, R. Staudt, J. Böhm, R. Gläser, Sep. Purif. Technol. 2011, 77 (2), 251–260. DOI: 10.1016/j.seppur.2010.12.015
- 15
L. Riboldi, O. Bolland, J. M. Ngoy, N. Wagner, Energy Procedia
2014, 63, 2289–2304. DOI: 10.1016/j.egypro.2014.11.248
10.1016/j.egypro.2014.11.248 Google Scholar
- 16 T. L. P. Dantas, F. M. T. Luna, I. J. Silva, D. C. S. de Azevedo, C. A. Grande, A. E. Rodrigues, R. F. P. M. Moreira, Chem. Eng. J. 2011, 169 (1–3), 11–19. DOI: 10.1016/j.cej.2010.08.026
- 17
R. B. Rios, L. S. Correia, M. Bastos-Neto, A. E. B. Torres, S. A. Hatimondi, A. M. Ribeiro, A. E. Rodrigues, C. L. Cavalcante, D. C. S. de Azevedo, Adsorption
2014, 20 (8), 945–957. DOI: 10.1007/s10450-014-9639-3
10.1007/s10450‐014‐9639‐3 Google Scholar
- 18 S. Sircar, J. R. Hufton, Adsorption 2000, 6 (2), 137–147. DOI: 10.1023/A:1008965317983
- 19 S. Jribi, T. Miyazaki, B. B. Saha, A. Pal, M. M. Younes, S. Koyama, A. Maalej, Int. J. Heat Mass Transfer 2017, 108, 1941–1946. DOI: 10.1016/j.ijheatmasstransfer.2016.12.114
- 20 F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. L. Llewellyn, G. Maurin, Adsorption by Powder & Porous Solids – Principles Methodology and Applications, 2nd ed., Academic Press, London 2014.
- 21 F. Dreisbach, R. Staudt, J. U. Keller, Adsorption 1999, 5 (3), 215–227.
- 22 J. Moellmer, A. Moeller, F. Dreisbach, R. Glaeser, R. Staudt, Microporous Mesoporous Mater. 2011, 138 (1–3), 140–148. DOI: 10.1016/j.micromeso.2010.09.013
- 23 M. Bastos-Neto, A. E. B. Torres, D. S. C. d. Azevedo, C. L. Cavalcante Jr., Adsorption 2005, 11, 911–915.
- 24 A. Chatterjee, S. Schiewer, Chem. Eng. J. 2014, 244, 105–116. DOI: 10.1016/j.cej.2013.12.017
- 25 C. Yao, T. Chen, Chem. Eng. J. 2015, 265, 93–99. DOI: 10.1016/j.cej.2014.12.005
- 26 S. Farooq, D. M. Ruthven, Chem. Eng. Sci. 1990, 45 (1), 107–115.
- 27 P. Cheng, C. A. V. Costa, Chem. Eng. Sci. 1997, 52 (9), 1493–1499.
- 28 R. Chauveau, G. Grévillot, S. Marsteau, C. Vallières, Chem. Eng. Res. Des. 2013, 91 (5), 955–962. DOI: 10.1016/j.cherd.2012.09.019
- 29 O. T. Qazvini, S. Fatemi, Sep. Purif. Technol. 2015, 139, 88–103. DOI: 10.1016/j.seppur.2014.09.031
- 30 M. G. Plaza, I. Durán, N. Querejeta, F. Rubiera, C. Pevida, Ind. Eng. Chem. Res. 2016, 55 (11), 3097–3112. DOI: 10.1021/acs.iecr.5b04856
- 31 M. S. Shafeeyan, W. M. A. Wan Daud, A. Shamiri, Chem. Eng. Res. Des. 2014, 92 (5), 961–988. DOI: 10.1016/j.cherd.2013.08.018
- 32 C. A. Grande, A. E. Rodrigues, Ind. Eng. Chem. Res. 2007, 46, 4595–4605.
- 33 S. Cavenati, C. A. Grande, A. E. Rodrigues, Chem. Eng. Sci. 2006, 61 (12), 3893–3906. DOI: 10.1016/j.ces.2006.01.023
- 34 R. Srinivasan, S. R. Auvil, J. M. Schork, Chem. Eng. J. 1995, 57, 137–144.
- 35 R. B. Bird, W. E. Stewart, E. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, New York 2006.
- 36 B. Silva, I. Solomon, A. M. Ribeiro, U. H. Lee, Y. K. Hwang, J.-S. Chang, J. M. Loureiro, A. E. Rodrigues, Sep. Purif. Technol. 2013, 118, 744–756. DOI: 10.1016/j.seppur.2013.08.024
- 37 R. M. Siqueira, G. R. Freitas, H. R. Peixoto, J. F. d. Nascimento, A. P. S. Musse, A. E. B. Torres, D. C. S. Azevedo, M. Bastos-Neto, Energy Procedia 2017, 114, 2182–2192. DOI: 10.1016/j.egypro.2017.03.1355
- 38
M. Luberti, Y.-H. Kim, C.-H. Lee, M.-C. Ferrari, H. Ahn, Adsorption
2015, 21 (5), 353–363. DOI: 10.1007/s10450-015-9675-7
10.1007/s10450‐015‐9675‐7 Google Scholar
- 39
N. Casas, J. Schell, R. Pini, M. Mazzotti, Adsorption
2012, 18 (2), 143–161. DOI: 10.1007/s10450-012-9389-z
10.1007/s10450‐012‐9389‐z Google Scholar
- 40 F. Kreith, R. M. Manglik, M. S. Bohn, Principles of Heat Transfer, Cengage Learning, Boston, MA 2010.
- 41 R. S. Pillai, S. A. Peter, R. V. Jasra, Microporous Mesoporous Mater. 2008, 113 (1–3), 268–276. DOI: 10.1016/j.micromeso.2007.11.042
- 42 J. Liu, S. Keskin, D. S. Sholl, J. K. Johnson, J. Phys. Chem. C 2011, 115 (25), 12560–12566. DOI: 10.1021/jp203053h