Chemical Absorption of Carbon Dioxide Using Aqueous Piperidine Derivatives
Dong Jun Park
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Korea University, Department of Chemical and Biological Engineering, 145 Anam-ro, Seongbuk-gu, 136-713 Seoul, Republic of Korea
Search for more papers by this authorJeong Ho Choi
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Korea University, Department of Chemical and Biological Engineering, 145 Anam-ro, Seongbuk-gu, 136-713 Seoul, Republic of Korea
Search for more papers by this authorYoung Eun Kim
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Search for more papers by this authorSung Chan Nam
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Search for more papers by this authorKi Bong Lee
Korea University, Department of Chemical and Biological Engineering, 145 Anam-ro, Seongbuk-gu, 136-713 Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Yeo Il Yoon
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Correspondence: Yeo Il Yoon ([email protected]), Korea Institute of Energy Research, Greenhouse Gas Laboratory, 152, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea.Search for more papers by this authorDong Jun Park
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Korea University, Department of Chemical and Biological Engineering, 145 Anam-ro, Seongbuk-gu, 136-713 Seoul, Republic of Korea
Search for more papers by this authorJeong Ho Choi
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Korea University, Department of Chemical and Biological Engineering, 145 Anam-ro, Seongbuk-gu, 136-713 Seoul, Republic of Korea
Search for more papers by this authorYoung Eun Kim
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Search for more papers by this authorSung Chan Nam
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Search for more papers by this authorKi Bong Lee
Korea University, Department of Chemical and Biological Engineering, 145 Anam-ro, Seongbuk-gu, 136-713 Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Yeo Il Yoon
Korea Institute of Energy Research, Greenhouse Gas Laboratory,, 152, Gajeong-ro, Yuseong-gu, 305-343 Daejeon, Republic of Korea
Correspondence: Yeo Il Yoon ([email protected]), Korea Institute of Energy Research, Greenhouse Gas Laboratory, 152, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea.Search for more papers by this authorAbstract
The heat of CO2 absorption is one of the important factors determining the operating cost of the CO2 absorption process when using aqueous amine solutions. Aqueous monoethanolamine (MEA) solution is a commercial absorbent, but has several drawbacks. Although piperidine (PIPD) has a high heat of absorption, it shows good CO2 absorption performance, including a high rate of CO2 absorption and a high CO2 loading capacity in comparison to MEA. PIPD derivatives were selected to identify the effect of functional groups of PIPD on the CO2 loading and heat of absorption. Introduction of a methyl group to the PIPD molecule increased the heat of absorption, whereas a hydroxyl group reduced it. The results indicate that the introduction of functional groups in particular positions could provide advantages in CO2 absorption and stripping performance.
Supporting Information
Filename | Description |
---|---|
ceat201700375-sup-0001-misc_information.pdf1.3 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Energy Technology Perspectives 2015, International Energy Agency, Paris 2015.
- 2 M. Wang, A. S. Joel, C. Ramshaw, D. Eimer, N. M. Musa, Appl. Energy 2015, 158, 275–291.
- 3 A. Raksajati, M. T. Ho, D. E. Wiley, Ind. Eng. Chem. Res. 2013, 52, 16887–16901.
- 4 T. G. Amundsen, L. E. Øi, D. A. Eimer, J. Chem. Eng. Data 2009, 54, 3096–3100.
- 5 A. Hartono, E. O. Mba, H. F. Svendsen, J. Chem. Eng. Data 2014, 59, 1808–1816.
- 6 T. Nguyen, M. Hilliard, G. T. Rochelle, Int. J. Greenhouse Gas Control 2010, 4, 707–715.
- 7 C. Gouedard, D. Picq, F. Launay, P.-L. Carrette, Int. J. Greenhouse Gas Control 2012, 10, 244–270.
- 8 A. Veawab, P. Tontiwachwuthikul, A. Chakma, Ind. Eng. Chem. Res. 1999, 38, 3917–3924.
- 9 J. Oexmann, A. Kather, Int. J. Greenhouse Gas Control 2010, 4, 36–43.
- 10 I. Pfaff, J. Oexmann, A. Kather, Energy 2010, 35, 4030–4041.
- 11 G. T. Rochelle, E. Chen, S. Freeman, D. V. Wagener, Q. Xu, A. Voice, Chem. Eng. J. 2011, 171, 725–733.
- 12 Y. E. Kim, J. A. Lim, S. K. Jeong, Y. I. Yoon, S. T. Bae, S. C. Nam, Bull. Korean Chem. Soc. 2013, 34, 783–787.
- 13 R. Sakwattanapong, A. Aroonwilas, A. Veawab, Ind. Eng. Chem. Res. 2005, 44, 4465–4473.
- 14 H. Lepaumier, D. Picq, P.-L. Carrette, Ind. Eng. Chem. Res. 2009, 48, 9068–9075.
- 15 L. Dubois, D. Thomas, Chem. Eng. Technol. 2012, 35, 513–524.
- 16 S. A. Freeman, J. Davis, G. T. Rochelle, Int. J. Greenhouse Gas Control 2010, 4, 756–761.
- 17 S. A. Freeman, Ph.D. Thesis, The University of Texas, Austin 2011.
- 18 K. Robinson, A. McCluskey, M. I. Attalla, ChemPhysChem 2011, 12, 1088–1099.
- 19 J. H. Choi, S. H. Yun, Y. E. Kim, Y. I. Yoon, S. C. Nam, Korean Chem. Eng. Res. 2015, 53, 57–63.
- 20 J. A. Lim, D. H. Kim, Y. I. Yoon, S. W. Jeong, K. T. Park, S. C. Nam, Energy Fuels 2012, 26, 3910–3918.
- 21 H. Nogent, X. L. Tacon, J. Loss Prev. Process Ind. 2002, 15, 445–448.
- 22 I. Kim, H. F. Svendsen, Ind. Eng. Chem. Res. 2007, 46, 5803–5809.
- 23 Y. E. Kim, J. H. Choi, S. C. Nam, S. K. Jeong, Y. I. Yoon, Energy Fuels 2012, 26, 1449–1458.
- 24 F. Mani, M. Peruzzini, P. Stoppioni, Green Chem. 2006, 8, 995–1000.
- 25 R. J. Hook, Ind. Eng. Chem. Res. 1997, 36, 1779–1790.
- 26 A. K. Chakraborty, G. Astarita, K. B. Bischoff, Chem. Eng. Sci. 1986, 41, 997–1003.
- 27 G. Puxty, R. Rowland, A. Attport, Q. Yang, M. Brown, R. Burns, M. Maeder, M. Attalla, Environ. Sci. Technol. 2009, 43, 6427–6433.
- 28 S. Xu, F. D. Otto, A. E. Mather, Can. J. Chem. 1993, 71, 1048–1050.
- 29 F.-Y. Jou, F. D. Otto, A. E. Mather, Ind. Eng. Chem. Res. 1994, 33, 2002.