Synthesis of Nanocomposite Poly(vinyl alcohol)-Tin Oxide Mixed-Matrix Membranes for Textile Effluent Treatment
Jibin Babu
Sardar Vallabhbhai National Institute of Technology, Department of Chemical Engineering, 395 007 Surat, Guijarat, India
Search for more papers by this authorCorresponding Author
Zagabathuni Venkata Panchakshari Murthy
Sardar Vallabhbhai National Institute of Technology, Department of Chemical Engineering, 395 007 Surat, Guijarat, India
Correspondence: Zagabathuni Venkata Panchakshari Murthy ([email protected], [email protected]), Sardar Vallabhbhai National Institute of Technology, Department of Chemical Engineering, Surat 395 007, Gujarat, India.Search for more papers by this authorJibin Babu
Sardar Vallabhbhai National Institute of Technology, Department of Chemical Engineering, 395 007 Surat, Guijarat, India
Search for more papers by this authorCorresponding Author
Zagabathuni Venkata Panchakshari Murthy
Sardar Vallabhbhai National Institute of Technology, Department of Chemical Engineering, 395 007 Surat, Guijarat, India
Correspondence: Zagabathuni Venkata Panchakshari Murthy ([email protected], [email protected]), Sardar Vallabhbhai National Institute of Technology, Department of Chemical Engineering, Surat 395 007, Gujarat, India.Search for more papers by this authorAbstract
Thin-film nanocomposite membranes were prepared by dip-coating poly(vinyl alcohol) (PVA) and tin oxide (SnO2) nanoparticles over a polyethersulfone membrane support. PVA was cross-linked using malic acid for stability. The membranes were characterized by Fourier transform infrared spectroscopy, field emission gun-scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, atomic force microscopy, and contact angle measurement; and nanoparticles, by dynamic light scattering and transmission electron microscopy. The membranes were subjected to filtration of synthetic dyes wastewater. The performance of the prepared membranes was compared with those of membranes without SnO2 nanoparticles. A fouling study was conducted using humic acid. The structural properties of the membranes were calculated using the extended Nernst-Planck equation.
Supporting Information
Filename | Description |
---|---|
ceat201700037-sup-0001-misc_information.pdf826.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 B. Van der Bruggen, C. Vandecasteele, Environ. Pollut. 2003, 122, 435–445.
- 2 A. A. Hussain, A. E. Al-Rawajfeh, Recent Pat. Chem. Eng. 2009, 2, 51–66.
- 3 Z. V. P. Murthy, L. B. Chaudhari, J. Hazard. Mater. 2008, 160, 70–77.
- 4 S. H. Lin, C. F. Peng, Water Res. 1996, 30, 587–592.
- 5 G. R. Guillen, Y. Pan, M. Li, E. M. V. Hoek, Ind. Eng. Chem. Res. 2011, 50, 3798–3817.
- 6 A. Ismail, M. Padaki, N. Hilal, T. Matsuura, W. Lau, Desalination 2015, 356, 140–148.
- 7 J. Jegal, N. W. Oh, K. H. Lee, J. Appl. Polym. Sci. 2000, 77, 347–354.
- 8 F. Peng, X. Huang, A. Jawor, E. M. Hoek, J. Membr. Sci. 2010, 353, 169–176.
- 9 F. Peng, Z. Jiang, E. M. Hoek, J. Membr. Sci. 2011, 368, 26–33.
- 10 A. Ahmad, N. Yusuf, B. Ooi, Desalination 2012, 287, 35–40.
- 11 S. Pourjafar, A. Rahimpour, M. Jahanshahi, J. Ind. Eng. Chem. 2012, 18, 1398–1405.
- 12 N. Wang, S. Ji, G. Zhang, J. Li, L. Wang, Chem. Eng. J. 2012, 213, 318–329.
- 13 H. H. Rana, N. K. Saha, S. K. Jewrajka, A. V. R. Reddy, Desalination 2015, 357, 93–103.
- 14 E. Salehi, S. Madaeni, L. Rajabi, V. Vatanpour, A. Derakhshan, S. Zinadini, S. Ghorabi, H. A. Monfared, Sep. Purif. Technol. 2012, 89, 309–319.
- 15 G. N. B. Baroña, M. Choi, B. Jung, J. Colloid Interface Sci. 2012, 386, 189–197.
- 16 M. Abdel-Hameed, J. Appl. Sci. Res. 2012, 8, 3811–3822.
- 17 B. Rajaeian, A. Heitz, M. O. Tade, S. Liu, J. Membr. Sci. 2015, 485, 48–59.
- 18 C. M. Patel, M. Chakraborty, Z. V. P. Murthy, J. Ind. Eng. Chem. 2014, 20, 2111–2118.
- 19 B. Rajaeian, A. Rahimpour, M. O. Tade, S. Liu, Desalination 2013, 313, 176–188.
- 20 W. R. Bowen, A. W. Mohammad, N. Hilal, J. Membr. Sci. 1997, 126, 91–105.
- 21 T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, RSC Adv. 2015, 5, 7880–7889.
- 22 J. H. Jhaveri, Z. V. P. Murthy, Desalination 2016, 379, 137–154.
- 23 V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, J. Membr. Sci. 2011, 375, 284–294.
- 24 Y. Mansourpanah, S. Madaeni, A. Rahimpour, A. Farhadian, A. Taheri, J. Membr. Sci. 2009, 330, 297–306.
- 25 A. Akbari, J. Remigy, P. Aptel, Chem. Eng. Process. 2002, 41, 601–609.
- 26 H. Kelewou, A. Lhassani, M. Merzouki, P. Drogui, Desalin. Water Treat. 2015, 54, 1735–1746.
- 27 A. I. Schäfer, A. G. Fane, T. D. Waite, Nanofiltration: Principles and Applications, Elsevier, Oxford 2005.
- 28 S. Yu, M. Liu, M. Ma, M. Qi, Z. Lü, C. Gao, J. Membr. Sci. 2010, 350, 83–91.
- 29 R. Jiraratananon, A. Sungpet, P. Luangsowan, Desalination 2000, 130, 177–183.
- 30 H. S. Lee, S. J. Im, J. H. Kim, H. J. Kim, J. P. Kim, B. R. Min, Desalination 2008, 219, 48–56.
- 31 H. H. Rana, N. K. Saha, S. K. Jewrajka, A. V. R. Reddy, Desalination 2015, 357, 93–103.
- 32 R. Kumar, A. M. Isloor, A. F. Ismail, S. A. Rashid, A. A. Ahmed, Desalination 2013, 316, 76–84.
- 33 L. Y. Ng, C. P. Leo, A. W. Mohammad, J. Appl. Polym. Sci. 2011, 121, 1804–1814.
- 34 G. L. Jadav, P. S. Singh, J. Membr. Sci. 2009, 328, 257–267.
- 35 M. Homayoonfal, M. R. Mehrnia, M. Shariaty-Niassar, A. Akbari, A. F. Ismail, T. Matsuura, Desalination 2014, 354, 125–142.
- 36 S. Roy, S. A. Ntim, S. Mitra, K. K. Sirkar, J. Membr. Sci. 2011, 375, 81–87.
- 37 S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, J. Membr. Sci. 2014, 453, 292–301.