Closing the Gap in Formic Acid Reforming
Long Zhao
Bayer (China) Limited, 24th Floor, No. 33 Huayuan Shiquiao Rd., 200120 Shanghai, China
RWTH Aachen University, CAT Catalytic Center, ITMC, Worringerweg 1, 52074 Aachen, Germany
Search for more papers by this authorGiulio Lolli
Covestro AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany
Search for more papers by this authorAurel Wolf
Covestro AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany
Search for more papers by this authorCorresponding Author
Leslaw Mleczko
Bayer AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany
Correspondence: Leslaw Mleczko ([email protected]), Bayer AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany.Search for more papers by this authorLong Zhao
Bayer (China) Limited, 24th Floor, No. 33 Huayuan Shiquiao Rd., 200120 Shanghai, China
RWTH Aachen University, CAT Catalytic Center, ITMC, Worringerweg 1, 52074 Aachen, Germany
Search for more papers by this authorGiulio Lolli
Covestro AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany
Search for more papers by this authorAurel Wolf
Covestro AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany
Search for more papers by this authorCorresponding Author
Leslaw Mleczko
Bayer AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany
Correspondence: Leslaw Mleczko ([email protected]), Bayer AG, E41, Kaiser-Wilhelm-Allee 60, 51368 Leverkusen, Germany.Search for more papers by this authorAbstract
Formic acid (FA) has the potential to become the renewable platform chemical in the future chemical industry. To achieve this potential, FA and its conversion processes should be competitive with the traditional platform chemicals and processes. A reaction kinetic study and a process conceptual design of FA reforming to CO are conducted. The optimized process is characteristic of high conversion, selectivity, and overall exergy efficiency, which outperforms the conventional steam methane reformer that is limited by its thermodynamic equilibrium and consequently displays lower overall exergy efficiency. CO generated from FA reforming can be used as the component of ‘renewable syngas' that seems to be attractive in consideration of some important industrial aspects.
Supporting Information
Filename | Description |
---|---|
ceat201600732-sup-0001-misc_information.pdf241 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Z. Wang, J. Shi, Y. Zhao, Technology Roadmap: China wind Energy Development Roadmap 2050, Energy Research Institute in China National Development and Reform Commission, Beijing 2011.
- 2
C. Marcantonini, A. D. Ellerman, The Cost of Abating CO2 Emissions by Renewable Energy Incentives in Germany, Climate Policy Research Unit in European University Institute, Italy
2013.
10.1109/EEM.2013.6607312 Google Scholar
- 3 P. Komor, Wind and Solar Electricity: Challenges and Opportunities, University of Colorado, Boulder, CO 2009.
- 4 C. Pieper, H. Rubel, Electricity Storage: Making Large-Scale Adoption of Wind and Solar Energies a Reality, The Boston Consulting Group 2010.
- 5 M. van der Hoeven, Technology Roadmap – Energy Storage, International Energy Agency, International Energy Agency, Paris 2014.
- 6 J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296–7343.
- 7
L. Mleczko, A. Wolf, G. Lolli, Chem. Biol. Eng. Rev.
2016, 3 (5), 204–218.
10.1002/cben.201600011 Google Scholar
- 8 W. Leitner, Angew. Chem. Int. Ed. Engl. 1995, 34, 2207–2221.
- 9 D. Preti, S. Squarcialupi, G. Fachinetti, Angew. Chem. Int. Ed. 2010, 49, 2581–2584.
- 10 H. Konishi, H. Nagase, K. Manabe, Chem. Commun. 2015, 51, 1854–1857.
- 11 M. S. Yalfani, G. Lolli, T. E. Müller, A. Wolf, L. Mleczko, ChemSusChem 2015, 8, 443–447.
- 12 E. Karakhanov, A. Maksimov, Y. Kardasheva, E. Runova, R. Zakharov, M. Terenina, C. Kenneally, V. Arredondo, Catal. Sci. Technol. 2014, 4, 540–547.
- 13 M. S. Yalfani, G. Lolli, A. Wolf, L. Mleczko, T. E. Müller, W. Leitner, Green Chem. 2013, 11, 1146–1149.
- 14 L. Zhu, L. Wang, B. Li, W. Li, B. Fu, Catal. Sci. Technol. 2016, 6, 6172–6176.
- 15 J. Deutsch, R. Eckelt, A. Koeckritz, A. Martin, Tetrahedron 2009, 65, 10365–10369.
- 16 M. Malinowski, K. Malinowska, L. Zatorski, Bull. Soc. Chim. Belg. 1983, 92, 225–227.
- 17 P. Mars, J. Scholten, P. Zwietering, Adv. Catal. 1963, 14, 35–113.
- 18 W. Supronowicz, I. A. Ignatyev, G. Lolli, A. Wolf, L. Zhao, L. Mleczko, Green Chem. 2015, 17, 2904–2911.
- 19 C. M. Jens, K. Nowakowski, J. Scheffczyk, K. Leonhard, A. Bardow, Green Chem. 2016, 18, 5621–5629.
- 20 N. von der Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev. 2014, 43, 7982–7994.
- 21 C. Federsel, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 6254–6257.
- 22 S. Wesselbaum, U. Hintermair, W. Leitner, Angew. Chem. Int. Ed. 2012, 51, 8585–8588.
- 23 A. Behr, K. Nowakowski, Adv. Inorg. Chem. 2014, 66, 223–258.
- 24 D. Preti, S. Squarcialupi, G. Fachinetti, ChemCatChem 2012, 4, 469–471.
- 25 J. Albert, P. Wasserscheid, Green Chem. 2015, 17, 5164–5171.
- 26 J. Ye, J. K. Johnson, ACS Catal. 2015, 5, 2921–2928.
- 27 J. Ye, J. K. Johnson, ACS Catal. 2015, 5, 6219–6229.
- 28 M. Ai, J. Catal. 1977, 50, 291–300.
- 29 N. Rees, R. Compton, J. Solid State Electrochem. 2011, 15, 2095–2100.
- 30 N. Aslam, M. Masdar, S. Kamarudin, W. Daud, APCBEE Proc. 2012, 3, 33–39.
- 31 N. Chalov, O. Aleksandrova, Gidroliz. Lesokhim. Prom. 1957, 10, 15–17.
- 32 T. Ito, F. Yoshida, J. Chem. Eng. Data 1963, 8, 315–320.
- 33 X. Zhong, Z. Huang, Chem. Eng. (China) 1983, 11, 64–72.
- 34 A. Hinderink, F. Kerkhof, A. Lie, J. de Swaan Arons, H. van der Kooi, Chem. Eng. Sci. 1996, 51, 4693–4700.
- 35 A. Graveland, E. Gisolf, Comput. Chem. Eng. 1998, 22, S545–S552.
- 36 J. Fan, L. Zhu, P. Jiang, L. Li, H. Liu, J. Cleaner Prod. 2016, 131, 247–258.
- 37 J. Shi, J. Wang, G. Yu, M. Chen, Chemical Engineering Handbook (Chinese), 2nd ed., Chemical Industry Press, Beijing 1996.
- 38 J. Stark, H. Wallace, Chemistry Data Book (Chinese), Carbohydrate Processing Press, Beijing 1986.
- 39 Y. Noto, K. Fukuda, T. Onishi, K. Tamaru, Trans. Faraday Soc. 1967, 63, 2300–2308.
- 40 Y. Noto, K. Fukuda, T. Onishi, K. Tamaru, Bull. Chem. Soc. Jpn. 1967, 10, 2459.
- 41 K. Fukuda, Y. Noto, T. Onishi, K. Tamaru, Trans. Faraday. Soc. 1967, 63, 3072–3080.
- 42 L. Horsley, Azeotropic Data – III, Advances in Chemistry, American Chemical Society, Washington, DC 1973.
- 43 A. Boyano, A. Blanco-Marigorta, T. Morosuk, G. Tsatsaronis, Int. J. Thermodyn. 2012, 15, 1–9.
- 44 B. Molinos, Ph. D. Thesis, RWTH Aachen University 2015.
- 45 Z. Abdin, C. Webb, E. Gray, Renewable Sustainable Energy Rev. 2015, 52, 1791–1808.
- 46 M. Serdar Genc, M. Celik, I. Karasu, Renewable Sustainable Energy Rev. 2012, 16, 6631–6646.
- 47 F. Petrakopoulou, A. Robinson, M. Loizidou, J. Cleaner Prod. 2016, 113, 450–458.