Preparation of High-Performance Membranes Derived from Poly(4-methyl-1-pentene)/Zinc Oxide Particles
Corresponding Author
Amir Hossein Saeedi Dehaghani
Tarbiat Modares University, Faculty of Chemical Engineering, Department of Petroleum Engineering, P.O. Box 14115-114, Tehran, Iran
Correspondence: Amir Hossein Saeedi Dehaghani ([email protected]), Tarbiat Modares University, Faculty of Chemical Engineering, Department of Petroleum Engineering, P.O. Box 14115-114, Tehran, Iran.Search for more papers by this authorVahid Pirouzfar
Islamic Azad University, Central Tehran Branch, Young Researchers and Elite Club, Tehran, Iran
Search for more papers by this authorCorresponding Author
Amir Hossein Saeedi Dehaghani
Tarbiat Modares University, Faculty of Chemical Engineering, Department of Petroleum Engineering, P.O. Box 14115-114, Tehran, Iran
Correspondence: Amir Hossein Saeedi Dehaghani ([email protected]), Tarbiat Modares University, Faculty of Chemical Engineering, Department of Petroleum Engineering, P.O. Box 14115-114, Tehran, Iran.Search for more papers by this authorVahid Pirouzfar
Islamic Azad University, Central Tehran Branch, Young Researchers and Elite Club, Tehran, Iran
Search for more papers by this authorAbstract
The efficiency of gas separation by mixed-matrix membranes (MMMs) derived from poly(4-methyl-1-pentene) (PMP) filled by zinc oxide nanoparticles is investigated. The membranes are prepared by the solvent evaporation method. The zinc oxide nanoparticles are loaded at different weight percentages. The results reveal that adding zinc oxide nanoparticles at all loading percentages of the nanoparticles increases the selectivity of all gas pairs such as O2/N2, CO2/CH4, and CO2/N2. Furthermore, the CO2 permeability in PMP-zinc oxide MMMs was significantly improved when increasing the feed pressure.
References
- 1 S. Zeinali, M. Aryaeinezhad, Chem. Eng. Technol. 2015, 38 (11), 2079–2086.
- 2 A. F. Barquín, C. C. Coterillo, M. Palomino, S. Valencia, A. Irabien, Chem. Eng. Technol. 2015, 38 (4), 658–666.
- 3 S. Heydari, V. Pirouzfar, RSC Adv. 2016, 6, 14149–14163.
- 4 M. Salimi, V. Pirouzfar, E. Kianfar, Colloid Polym. Sci. 2017, 295 (1), 215–226.
- 5 M. H. Nematollahi, A. H. Saiedi, V. Pirouzfar, E. Akhondi, Macromol. Res. 2016, 24 (9), 782–792.
- 6 V. Pirouzfar, M. R. Omidkhah, Iran. Polym. J. 2016, 25 (3), 203–212.
- 7 R. Nasir, H. Mukhtar, Z. Man, D. F. Mohshim, Chem. Eng. Technol. 2013, 36 (5), 717–727.
- 8 H. Karkhanechi, H. Kazemian, H. Nazockdast, M. R. Mozdianfard, S. M. Bidoki, Chem. Eng. Technol. 2012, 35 (5), 885–892.
- 9 M. Hussain, A. König, Chem. Eng. Technol. 2012, 35 (3), 561–569.
- 10 A. Jamil, O. P. Ching, B. M. Shariff, Chem. Eng. Technol. 2016, 39 (8), 1393–1405.
- 11 G. Ciobanu, G. Carja, O. Ciobanu, Microporous Mesoporous Mater. 2008, 115 (1–2), 61–66.
- 12 V. Pirouzfar, S. S. Hosseini, M. R. Omidkhah, A. Z. Moghaddam, J. Ind. Eng. Chem. 2014, 20 (3), 1061–1070.
- 13 V. Pirouzfar, S. S. Hosseini, M. R. Omidkhah, A. Z. Moghaddam, Polym. Eng. Sci. 2014, 54 (1), 147–157.
- 14 Z. Y. Yeo, S. P. Chai, P. W. Zhu, A. R. Mohamed, RSC Adv. 2014, 4, 54322–54334.
- 15 N. Kosinov, J. Gascon, F. Kapteijn, E. J. M. Hensen, J. Membr. Sci. 2015, 499, 65–79.
- 16 P. Li, Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, S. Wang, J. Membr. Sci. 2015, 495, 130–168.
- 17 G. Kang, Y. Cao, J. Membr. Sci. 2014, 463, 145–165.
- 18 G. Dong, H. Li, V. Chen, J. Mater. Chem. A 2013, 1, 4610–4630.
- 19 P. M. Budd, N. B. McKeown, Polym. Chem. 2010, 1, 63–68.
- 20 K. Nagai, S. Kanehashi, S. Tabei, T. Nakagawa, J. Membr. Sci. 2005, 251 (1–2), 101–110.
- 21 V. R. Pereira, A. M. Isloor, U. K. Bhat, A. F. Ismail, A. Obaid, H. Fun, RSC Adv. 2015, 5, 53874–53885.
- 22 S. Lee, J. S. Lee, M. Lee, J. W. Choi, S. Kim, S. Lee, J. Membr. Sci. 2014, 452, 311–318.
- 23 H. J. Song, Y. J. Jo, S. Y. Kim, J. Lee, C. K. Kim, J. Membr. Sci. 2014, 466, 173–182.
- 24 P. Bhadra, S. Sengupta, N. P. Ratchagar, B. Achar, A. Chadha, E. Bhattacharya, J. Membr. Sci. 2016, 503, 16–24.
- 25 K. Y. Jee, Y. T. Lee, J. Membr. Sci. 2014, 456, 1–10.
- 26 X. Y. Chen, V. T. Hoang, D. Rodrigue, S. Kaliaguine, RSC Adv. 2013, 3, 24266–24279.
- 27 S. S. Hosseini, M. R. Omidkhah, A. Z. Moghaddam, V. Pirouzfar, W. B. Krantz, N. R. Tan, Sep. Purif. Technol. 2014, 122 (10), 278–289.
- 28 F. Dorosti, M. R. Omidkhah, M. Z. Pedram, F. Moghadam, Chem. Eng. J. 2011, 171, 1469–1476.
- 29 F. Moghadam, M. R. Omidkhah, E. V. Farahani, M. Z. Pedram, F. Dorosti, Sep. Purif. Technol. 2011, 77, 128–136.
- 30 R. Mahajan, W. Koros, Polym. Eng. Sci. 2002, 42, 1420–1431.
- 31 M. Wang, Z. Wang, N. Li, J. Liao, S. Zhao, J. Wang, S. Wang, J. Membr. Sci. 2015, 495, 252–268.
- 32
B. Bhushan, Springer Handbook of Nanotechnology, Springer, New York
2004.
10.1007/3-540-29838-X Google Scholar
- 33 A. Kılıç, Ç. A. Oral, A. Sirkecioğlu, Ş. B. T. Ersolmaz, M. G. Ahunbay, J. Membr. Sci. 2015, 489, 81–89.
- 34 S. Mohanapriya, S. D. Bhat, A. K. Sahu, S. Pitchumani, P. Sridhar, A. K. Shukla, Energy Environ. Sci. 2009, 2, 1210–1216.
- 35 T. H. Bae, J. R. Long, Energy Environ. Sci. 2013, 6, 3565–3569.
- 36 A. Ruckstuhl, J. Chem. Educ. 1951, 28 (11), 594.
- 37 T. W. Pechaf, M. Tsapatsisb, E. Marand, R. Davis, Desalination 2002, 146, 3–9.
- 38 J. Ahn, W. J. Chung, I. Pinnau, M. D. Guiver, J. Membr. Sci. 2008, 314, 123–133.
- 39 A. F. Ismail, R. A. Rahim, W. A. Rahman, Sep. Purif. Technol. 2008, 63, 200–206.
- 40 S. Hassanajili, E. Masoudi, G. Karimi, M. A. Khademi, Sep. Purif. Technol. 2013, 116, 1–12.
- 41 J. C. Maxwell, Treatise on Electricity and Magnetism, Clarendon Press, Oxford 1873.
- 42 B. Yu, H. Conga, X. Zhao, Prog. Nat. Sci. 2012, 22 (6), 661–667.
- 43 L. Ge, Z. Zhu, V. Rudolph, Sep. Purif. Technol. 2011, 78, 76–82.
- 44 L. Ge, Z. Zhu, F. Li, S. Liu, L. Wang, X. Tang, V. Rudolph, J. Phys. Chem. C 2011, 115, 6661–6670.
- 45 T. H. Weng, H. H. Tseng, M. Y. Wey, Int. J. Hydrogen Energy 2009, 34, 8707–8715.
- 46 S. N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, K. J. Balkus, I. H. Musselman, J. P. Ferraris, Ind. Eng. Chem. Res. 2013, 52, 6991–7001.
- 47 A. M. W. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 2008, 314, 193–199.
- 48 Y. C. Hudiono, T. K. Carlisle, A. L. LaFrate, D. L. Gin, R. D. Noble, J. Membr. Sci. 2011, 370, 141–148.
- 49 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 221, 233–239.
- 50 T. Suzuki, Y. Yamada, High Perform. Polym. 2007, 19, 553–564.
- 51 Z. Jia, G. Wu, Microporous Mesoporous Mater. 2016, 235, 151–159.
- 52 A. J. Fletcher, K. M. Thomas, M. J. Rosseinsky, J. Solid State Chem. 2005, 178, 2491–2510.
- 53 F. A. A. Paz, J. Klinowski, Inorg. Chem. 2004, 43, 3882–3893.
- 54 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312–1314.
- 55 C. Xue, J. Zou, Z. Sun, F. Wang, K. Han, H. Zhu, Int. J. Hydrogen Energy 2014, 39, 7931–7939.
- 56 H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, J. Phys. Chem. C 2011, 115, 23261–23266.
- 57 P. Moradihamedani, N. A. Ibrahim, D. Ramimoghadam, W. M. Z. W. Yunus, N. A. Yusof, J. Appl. Polym. Sci. 2014, 131 (16), 39745.
- 58 M. Sheikh, M. Asghari, M. Afsari, Int. J. Nano Dimens. 2017, 8 (1), 31–39.