Fabrication of Solvent-Resistant Copolyimide Membranes for Pervaporation Recovery of Amide Solvents
Rong Xu
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorMeng Guo
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorJin Wang
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorQi Zhang
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorCorresponding Author
Jing Zhong
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Correspondence: Jing Zhong ([email protected]), Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, Changzhou 213164, China.Search for more papers by this authorRong Xu
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorMeng Guo
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorJin Wang
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorQi Zhang
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Search for more papers by this authorCorresponding Author
Jing Zhong
Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, 213164 Changzhou, China
Correspondence: Jing Zhong ([email protected]), Changzhou University, Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Gehu Road, Changzhou 213164, China.Search for more papers by this authorAbstract
Dimethylformamide and dimethylacetamide are important industrial chemicals, which are used, e.g., as solvents in the manufacturing of polyurethane products. They are conventionally recovered by distillation associated with high energy consumption and operating costs. In contrast, pervaporation is an energy-efficient membrane separation method. Ceramic-supported copolyimide membranes were synthesized via the two-step thermal imidization method and applied to pervaporation recovery of dimethylformamide and dimethylacetamide. The prepared membrane demonstrated high resistance to the two amides in a wide concentration range. Effects of operating parameters such as feed temperature and feed concentration on pervaporation performances were investigated. The results showed that the copolyimide membrane is a promising candidate for the recovery of high concentrations of amide solvents.
Supporting Information
Filename | Description |
---|---|
ceat201600660-sup-0001-misc_information.pdf217.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 E. K. Solak, G. Asman, P. Çamurlu, O. Şanlı, Vacuum 2008, 82 (6), 579–587. DOI: 10.1016/j.vacuum.2007.08.012
- 2 A. Gescher, Chem. Res. Toxicol. 1993, 6 (3), 245–251. DOI: 10.1021/tx00033a001
- 3 D. A. Devi, B. Smitha, S. Sridhar, T. M. Aminabhavi, Sep. Purif. Technol. 2006, 51 (1), 104–111. DOI: 10.1016/j.seppur.2006.01.006
- 4 R. Xu, P. Lin, Q. Zhang, J. Zhong, T. Tsuru, Ind. Eng. Chem. Res. 2016, 55 (7), 2183–2190. DOI: 10.1021/acs.iecr.5b04439
- 5 S. Das, A. K. Banthia, B. Adhikari, Desalination 2006, 197 (1), 106–116. DOI: 10.1016/j.desal.2005.12.019
- 6 J. Tang, K. K. Sirkar, J. Membr. Sci. 2012, 421, 211–216. DOI: 10.1016/j.memsci.2012.07.015
- 7 J. D. S. Burgal, L. G. Peeva, S. Kumbharkar, A. Livingston, J. Membr. Sci. 2015, 479, 105–116. DOI: 10.1016/j.memsci.2014.12.035
- 8 Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, Sep. Purif. Technol. 2001, 25 (1), 251–260. DOI: 10.1016/S1383-5866(01)00109-5
- 9 D. Shah, K. Kissick, A. Ghorpade, R. Hannah, D. Bhattacharyya, J. Membr. Sci. 2000, 179 (1), 185–205. DOI: 10.1016/S0376-7388(00)00515-9
- 10 T. A. Peters, J. Fontalvo, M. A. G. Vorstman, N. E. Benes, R. A. Van Dam, Z. A. E. P. Vroon, J. T. F. Keurentjes, J. Membr. Sci. 2005, 248 (1), 73–80. DOI: 10.1016/j.memsci.2004.08.023
- 11 M. Samei, T. Mohammadi, A. A. Asadi, Chem. Eng. Res. Des. 2013, 91 (12), 2703–2712. DOI: 10.1016/j.cherd.2013.03.008
- 12 X. Ma, B. K. Lin, X. Wei, J. Kniep, Y. S. Lin, Ind. Eng. Chem. Res. 2013, 52 (11), 4297–4305. DOI: 10.1021/ie303188c
- 13 A. H. Saeedi Dehaghani, V. Pirouzfar, Chem. Eng. Technol. 2017, 40 (9), 1693–1701. DOI: 10.1002/ceat.201600693
- 14 L. Y. Jiang, Y. Wang, T. S. Chung, X. Y. Qiao, J. Y. Lai, Prog. Polym. Sci. 2009, 34 (11), 1135–1160. DOI: 10.1016/j.progpolymsci.2009.06.001
- 15 X. Qiao, T. S. Chung, Ind. Eng. Chem. Res. 2005, 44 (23), 8938–8943. DOI: 10.1021/ie050836g
- 16 J. Hao, K. Tanaka, H. Kita, K. Okamoto, J. Membr. Sci. 1997, 132 (1), 97–108. DOI: 10.1016/S0376-7388(97)00062-8
- 17 H. J. Park, T. H. Ahn, H. G. Jung, US Patent , 2010. 12 892 656
- 18 Y. J. Kim, T. E. Glass, G. D. Lyle, J. E. McGrath, Macromolecules 1993, 26 (6), 1344–1358. DOI: 10.1021/ma00058a024
- 19 Y. M. Xu, N. L. Le, J. Zuo, T. S. Chung, J. Membr. Sci. 2016, 499, 317–325. DOI: 10.1016/j.memsci.2015.10.059
- 20 X. Feng, R. Y. Huang, Ind. Eng. Chem. Res. 1997, 36 (4), 1048–1066. DOI: 10.1021/ie960189g
- 21 W. Wei, S. Xia, G. Liu, X. Gu, W. Jin, N. Xu, AIChE J. 2010, 56 (6), 1584–1592. DOI: 10.1002/aic.12086
- 22 Y. S. Toh, F. W. Lim, A. G. Livingston, J. Membr. Sci. 2007, 301 (1), 3–10. DOI: 10.1016/j.memsci.2007.06.034
- 23 Y. Liu, R. Wang, T. S. Chung, J. Membr. Sci. 2001, 189 (2), 231–239. DOI: 10.1016/S0376-7388(01)00415-X
- 24 W. Qiu, C. C. Chen, L. Xu, L. Cui, D. R. Paul, W. J. Koros, Macromolecules 2011, 44 (15), 6046–6056. DOI: 10.1021/ma201033j
- 25 R. Xu, S. M. Ibrahim, M. Kanezashi, T. Yoshioka, K. Ito, J. Ohshita, T. Tsuru, ACS Appl. Mater. Interfaces 2014, 6 (12), 9357–9364. DOI: 10.1021/am501731d
- 26 E. Johan, C. R. Abadal, J. Sekulić, S. R. Chowdhury, D. H. Blank, Microporous Mesoporous Mater. 2003, 65 (2), 197–208. DOI: 10.1016/j.micromeso.2003.08.010
- 27 R. Xu, J. Wang, M. Kanezashi, T. Yoshioka, T. Tsuru, AIChE J. 2013, 59 (4), 1298–1307. DOI: 10.1002/aic.13885
- 28 R. Xu, L. Zou, P. Lin, Q. Zhang, J. Zhong, Fuel Process. Technol. 2016, 154, 188–196. DOI: 10.1016/j.fuproc.2016.08.031
- 29 X. L. Wang, T. Tsuru, S. I. Nakao, S. Kimura, J. Membr. Sci. 1997, 135 (1), 19–32. DOI: 10.1016/S0376-7388(97)00125-7
- 30 X. Feng, R. Y. Huang, J. Membr. Sci. 1996, 118 (1), 127–131. DOI: 10.1016/0376-7388(96)00096-8
- 31 M. D. Kurkuri, T. M. Aminabhavi, J. Appl. Polym. Sci. 2004, 91 (6), 4091–4097. DOI: 10.1002/app.13640
- 32 E. K. Solak, O. Şanlı, Chem. Eng. Process. 2008, 47 (4), 633–641. DOI: 10.1016/j.cep.2006.12.001
- 33 H. M. Van Veen, Y. C. Van Delft, C. W. R. Engelen, P. P. A. C. Pex, Sep. Purif. Technol. 2001, 22, 361–366. DOI: 10.1016/S1383-5866(00)00119-2
- 34 P. Aptel, J. Cuny, J. Jozefonvicz, G. Morel, J. Neel, J. Appl. Polym. Sci. 1974, 18 (2), 351–364. DOI: 10.1002/app.1974.070180204