Absorption of CO2 with Amino Acid-Based Ionic Liquids and Corresponding Amino Acid Precursors
Javier Guzmán
Instituto Mexicano del Petróleo, Gerencia de Refinación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Search for more papers by this authorChristian Ortega-Guevara
Instituto Mexicano del Petróleo, Gerencia de Refinación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Search for more papers by this authorRoberto García de León
Instituto Mexicano del Petróleo, Gerencia de Refinación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Search for more papers by this authorCorresponding Author
Rafael Martínez-Palou
Instituto Mexicano del Petróleo, Gerencia de Transformación de Biomasa, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Correspondence: Rafael Martínez-Palou ([email protected]), Instituto Mexicano del Petróleo, Gerencia de Transformación de Biomasa, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico.Search for more papers by this authorJavier Guzmán
Instituto Mexicano del Petróleo, Gerencia de Refinación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Search for more papers by this authorChristian Ortega-Guevara
Instituto Mexicano del Petróleo, Gerencia de Refinación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Search for more papers by this authorRoberto García de León
Instituto Mexicano del Petróleo, Gerencia de Refinación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Search for more papers by this authorCorresponding Author
Rafael Martínez-Palou
Instituto Mexicano del Petróleo, Gerencia de Transformación de Biomasa, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
Correspondence: Rafael Martínez-Palou ([email protected]), Instituto Mexicano del Petróleo, Gerencia de Transformación de Biomasa, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico.Search for more papers by this authorAbstract
A comparative study for CO2 absorption among amino acids (AAs) and ionic liquids (ILs) containing tetramethylammonium [TMA] and tetrabutylphosphonium [TBP] as cations and the corresponding deprotonated amino acid as anions, namely, [TMA][AA] and [TBP][AA], is reported. Amino acids show an excellent performance for CO2 capture, better than the corresponding [TMA][AA], but AAs are less efficient than [TBP][AA]. In addition, [TBP][AA] present faster kinetics of absorption than the corresponding AA. [TBP][lysinate] exhibits the highest CO2 absorption capacity. A novel and fast method with low energy demand for microwave-assisted regeneration of the absorbents from the CO2-saturated solution is also described for the first time.
Supporting Information
Filename | Description |
---|---|
ceat201600593-sup-0001-misc_information.pdf317.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Z. Chunmao, H. Yoshikawa-Inoue, Sci. Total Environ. 2015, 524, 331–337.
- 2 U. E. Aronu, K. A. Hoff, H. F. Svendsen, Chem. Eng. Res. Des. 2011, 89, 1197–1203.
- 3 J. P. Brouwer, P. H. M. Feron, N. T. Asbroek, Fourth Annual Conference on Carbon Dioxide Capture & Sequestration, Alexandria, VA, May 2005.
- 4 M. L. Gray, D. C. Hreha, D. J. Fauth, J. S. Hoffman, S. W. Hedges, K. J. Champagne, H. W. Pennline, Energy Fuels 2009, 23, 4840–4844.
- 5 P. D. Vaidya, E. Y. Kenig, Chem. Eng. Technol. 2007, 30, 1467–1474.
- 6 R. Stanger, T. Wall, R. Spoerl, M. Paneru, S. Grathwohl, M. Weidmann, G. Schefflmecht, D. McDonald, K. Myohanen, J. Ritvanen, S. Rahiala, T. Hyppanen, J. Mletzko, A. Kather, S. Santos, Int. J. Greenhouse Gas Control 2015, 40, 55–125.
- 7 M. C. Romano, Int. J. Greenhouse Gas Control 2013, 18, 57–67.
- 8 J. Garcia-Fayos, V. B. Vert, M. Balaguer, C. Solis, C. Gaudillere, J. M. Serra, Catal. Today 2015, 257, 221–228.
- 9 E. I. Izgorodina, J. L. Hodgson, D. C. Weis, S. J. Pas, D. R. MacFarlane, J. Phys. Chem. B 2015, 119, 11748–11759.
- 10 F. J. Tamajon, E. Alvarez, F. Cerdeira, D. Gómez-Diaz, Chem. Eng. J. 2016, 283, 1069–1080.
- 11 A. Kossmann, S. Rehfeldt, P. Moser, H. Klein, Chem. Eng. Res. Des. 2015, 99, 236–247.
- 12 P. M. M. Blauwhoff, G. F. Versteeg, W. P. M. Van Swaaij, Chem. Eng. Sci. 1984, 39, 207–225.
- 13 P. D. Vaidya, P. Konduru, M. Vaidyanathan, Ind. Eng. Chem. Res. 2010, 49, 11067–11072.
- 14
- 14a I. R. Soosaiprakasam, A. Veawab, Int. J. Greenhouse Gas Control 2008, 2, 553–562;
- 14b T. Supap, R. Idem, P. Tontiwachwuthikul, C. Saiwan, Int. J. Greenhouse Gas Control 2009, 3, 133–142.
- 15 C. T. Molina, C. Bouallou, J. Cleaner Prod. 2015, 103, 463–468.
- 16 M. Kianpour, M. A. Sobati, S. Shahhosseini, Chem. Eng. Res. Des. 2012, 90, 2041–2050.
- 17 W. Xie, X. Ji, X. Feng, X. H. Lu, AIChE J. 2015, 61, 4437–4444.
- 18 F. Llovell, M. B. Oliveira, J. A. P. Coutinho, L. F. Vega, Catal. Today 2015, 255, 87–96.
- 19 G. Garcia, M. Atilhan, S. Aparicio, J. Phys. Chem. C 2015, 119, 21413–21425.
- 20 G. Li, D. Deng, Y. Chen, J. Chem. Thermodyn. 2014, 75, 58–62.
- 21 M. Gonzalez-Miquel, J. Bedia, C. Abrusci, J. Palomar, J. Rodríguez, J. Phys. Chem. B 2013, 117, 3398–3406.
- 22 S. J. Zhang, Y. H. Chen, R. X. F. Ren, J. Chem. Eng. Data 2005, 50, 230–233.
- 23 M. Kanakubo, T. Umecky, Y. Hiejima, J. Phys. Chem. B 2005, 29, 13847–13850.
- 24 C. Wang, X. Luo, X. Zhu, G. Cui, D. Jiang, D. Deng, H. Li, S. Dai, RSC Adv. 2013, 3, 15518–15527.
- 25 S. Ren, Y. Hou, S. Tian, X. Chen, W. Wu, J. Phys. Chem. B 2013, 117, 2482–2486.
- 26 S. H. Saravanamurugan, A. J. Kunov-Kruse, R. Fehrmann, ChemSusChem 2014, 7, 897–902.
- 27 J. L. McDonald, R. E. Sykora, P. Hixon, Environ. Chem. Lett. 2014, 12, 201–208.
- 28 B. F. Goodrich, J. C. de la Fuente, B. E. Gurkan, J. Phys. Chem. B 2011, 115, 9140–9150.
- 29 M. Ramdin, T. W. de Loos, T. J. H. Vlugt, Ind. Eng. Chem. Res. 2012, 51, 8149–8177.
- 30 R. Idem, T. Supap, H. Shi, Int. J. Greenhouse Gas Control 2015, 40, 6–25.
- 31 D. Guo, H. Thee, C. Y. Tan, J. Chen, W. Fei, S. Kentish, G. W. Stevens, G. da Silva, Energy Fuels 2013, 27, 3898–3904.
- 32 P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, Ind. Eng. Chem. Res. 2003, 42, 2832–2840.
- 33 P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, P. H. M. Feron, AIChE J. 2003, 49, 203–213.
- 34 S. Lee, H. J. Song, S. Maken, J. W. Park, Ind. Eng. Chem. Res. 2007, 46, 1578–1583.
- 35 C. E. Sánchez Fuentes, D. Guzmán-Lucero, M. Torres-Rodriguez, N. V. Likhanova, J. Navarrete Bolaños, O. Olivares-Xomelt, I. V. Lijanova, Sep. Purif. Technol. 2017, 182, 59–68.
- 36 J. G. Lu, H. Zhang, Y. Ji, F. Fan, C. Liu, Energy Fuels 2010, 24, 4617–4626.
- 37 A. Hartono, U. E. Aronu, H. F. Svendsen, Energy Procedia 2011, 4, 209–215.
- 38 Y. Hong, W. You-Ting, J. Ying-Ying, Z. Zheng, Z. Zhi-Bing, New J. Chem. 2009, 33, 2385–2390.
- 39 A. Bandyopadhyay, Clean Technol. Environ. Policy 2011, 13, 269–294.
- 40 S. Ziaii, G. T. Rochelle, T. F. Edgar, Ind. Eng. Chem. Res. 2009, 48, 6105–6111.
- 41 P. Luis, Desalination 2016, 380, 93–99.