Kinetics of CO2 Adsorption/Desorption of Polyethyleneimine-Mesoporous Silica
Mohammed J. Al-Marri
Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar
Qatar University, Department of Chemical Engineering, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorYussuf O. Kuti
Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorMajeda Khraisheh
Qatar University, Department of Chemical Engineering, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorAnand Kumar
Qatar University, Department of Chemical Engineering, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorCorresponding Author
Mahmoud M. Khader
Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar
Correspondence: Mahmoud M. Khader ([email protected]), Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar.Search for more papers by this authorMohammed J. Al-Marri
Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar
Qatar University, Department of Chemical Engineering, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorYussuf O. Kuti
Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorMajeda Khraisheh
Qatar University, Department of Chemical Engineering, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorAnand Kumar
Qatar University, Department of Chemical Engineering, College of Engineering, P.O. Box 2713, Doha, Qatar
Search for more papers by this authorCorresponding Author
Mahmoud M. Khader
Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar
Correspondence: Mahmoud M. Khader ([email protected]), Qatar University, Gas Processing Center, College of Engineering, P.O. Box 2713, Doha, Qatar.Search for more papers by this authorAbstract
The kinetics of adsorption of CO2 on solid sorbents based on polyethyleneimine/mesoporous silica (PEI/MPS) was studied by following the mass gain during CO2 flow. Linear (PEI-423) and branched (PEI-10k) polymers were studied. The solid sorbents were synthesized by impregnating the PEI into MPS foam. The kinetics of adsorption was fitted with a double-exponential model. In contrast, the desorption process obeyed first-order kinetics. The activation energy of desorption of PEI-423 was lower than that of PEI-10k, presumably because the branched polymer required more energy to expose its nitrogen to CO2. To increase the CO2 sorption capacity, the MPS was treated with nonionic surfactant materials prior to impregnation with PEI. This also lowered the maximum sorption temperature and desorption activation energies.
References
- 1 A. B. Rao, E. S. Rubin, Environ. Sci. Technol. 2002, 36 (20), 4467–4475. DOI: 10.1021/es0158861
- 2 C. W. Jones, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 31–52. DOI: 10.1146/annurev-chembioeng-061010-114252
- 3 A. M. Wolsky, E. J. Daniels, B. J. Jody, Environ. Prog. 1994, 13 (3), 214–219. DOI: 10.1002/ep.670130320
- 4 W. Conway, S. Bruggink, Y. Beyad, W. Luo, I. Melián-Cabrera, G. Puxty, P. Feron, Chem. Eng. Sci. 2015, 126, 446–454. DOI: 10.1016/j.ces.2014.12.053
- 5 B. P. Mandal, A. K. Biswas, S. S. Bandyopadhyay, Chem. Eng. Sci. 2003, 58 (18), 4137–4144. DOI: 10.1016/S0009-2509(03)00280-X
- 6 B. P. Mandal, S. S. Bandyopadhyay, Chem. Eng. Sci. 2006, 61 (16), 5440–5447. DOI: 10.1016/j.ces.2006.04.002
- 7 G. Maurin, P. L. Llewellyn, R. G. Bell, J. Phys. Chem. B 2005, 109 (33), 16084–16091. DOI: 10.1021/jp052716s
- 8 R. Serna-Guerrero, Y. Belmabkhout, A. Sayari, Chem. Eng. J. 2010, 161 (1–2), 173–181. DOI: 10.1016/j.cej.2010.04.024
- 9 Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem. Eng. Sci. 2010, 65 (11), 3695–3698. DOI: 10.1016/j.ces.2010.02.044
- 10 R. Serna-Guerrero, Y. Belmabkhout, A. Sayari, Chem. Eng. Sci. 2010, 65 (14), 4166–4172. DOI: 10.1016/j.ces.2010.04.029
- 11 G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A. H. A. Park, W. Li, C. W. Jones, E. P. Giannelis, Energy Environ. Sci. 2011, 4 (2), 444–452. DOI: 10.1039/c0ee00213e
- 12 G. Qi, L. Fu, B. H. Choi, E. P. Giannelis, Energy Environ. Sci. 2012, 5 (6), 7368–7375. DOI: 10.1039/c2ee21394j
- 13 C. Chen, W. J. Son, K. S. You, J. W. Ahn, W. S. Ahn, Chem. Eng. J. 2010, 161 (1–2), 46–52. DOI: 10.1016/j.cej.2010.04.019
- 14 Y. Labreche, R. P. Lively, F. Rezaei, G. Chen, C. W. Jones, W. J. Koros, Chem. Eng. J. 2013, 221, 166–175. DOI: 10.1016/j.cej.2013.01.086
- 15 G. P. Knowles, J. V. Graham, S. W. Delaney, A. L. Chaffee, Fuel Process. Technol. 2005, 86 (14–15), 1435–1448. DOI: 10.1016/j.fuproc.2005.01.014
- 16 P. Kumar, V. V. Guliants, Microporous Mesoporous Mater. 2010, 132 (1–2), 1–14. DOI: 10.1016/j.micromeso.2010.02.007
- 17 A. Tsyganok, P. J. E. Harlick, A. Sayari, Catal. Commun. 2007, 8 (5), 850–854. DOI: 10.1016/j.catcom.2006.09.010
- 18 D. D. Das, P. J. E. Harlick, A. Sayari, Catal. Commun. 2007, 8 (5), 829–833. DOI: 10.1016/j.catcom.2006.09.012
- 19 S. Deng, H. Li, S. Li, Y. Zhang, J. Mol. Catal. A: Chem. 2007, 268 (1–2), 169–175. DOI: 10.1016/j.molcata.2006.12.033
- 20 M. J. Al-Marri, M. M. Khader, M. Tawfik, G. Qi, E. P. Giannelis, Langmuir 2015, 31 (12), 3569–3576. DOI: 10.1021/acs.langmuir.5b00189
- 21 O. Cheung, Z. Bacsik, Q. Liu, A. Mace, N. Hedin, Appl. Energy 2013, 112, 1326–1336. DOI: 10.1016/j.apenergy.2013.01.017
- 22 F. Rezaei, M. A. Sakwa-Novak, S. Bali, D. M. Duncanson, C. W. Jones, Microporous Mesoporous Mater. 2015, 204, 34–42. DOI: 10.1016/j.micromeso.2014.10.047
- 23 Z. Jia, C. Y. Jiang, 238th ACS National Meeting, Washington, D.C., August 16–20, 2009.
- 24 S. J. Kang, T. Dou, Y. J. Gong, Q. Li, Y. Y. Zheng, Ranliao Huaxue Xuebao 2006, 34 (5), 625–628.
- 25 N. A. Rashidi, S. Yusup, B. H. Hameed, Energy 2013, 61, 440–446. DOI: 10.1016/j.energy.2013.08.050
- 26 B. Guo, L. Chang, K. Xie, J. Nat. Gas Chem. 2006, 15 (3), 223–229. DOI: 10.1016/S1003-9953(06)60030-3
- 27 T. L. P. Dantas, F. M. T. Luna, I. J. Silva, D. C. S. de Azevedo, C. A. Grande, A. E. Rodrigues, R. F. P. M. Moreira, Chem. Eng. J. 2011, 169 (1–3), 11–19. DOI: 10.1016/j.cej.2010.08.026
- 28 M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, A. Shamiri, J. Anal. Appl. Pyrolysis 2010, 89 (2), 143–151. DOI: 10.1016/j.jaap.2010.07.006
- 29 M. Auta, N. D. Amat Darbis, A. T. Mohd Din, B. H. Hameed, Chem. Eng. J. 2013, 233, 80–87. DOI: 10.1016/j.cej.2013.08.012
- 30 C. Chen, W.-S. Ahn, Chem. Eng. J. 2011, 166 (2), 646–651. DOI: 10.1016/j.cej.2010.11.038
- 31 J. A. Thote, R. V. Chatti, K. S. Iyer, V. Kumar, A. N. Valechha, N. K. Labhsetwar, R. B. Biniwale, M. K. N. Yenkie, S. S. Rayalu, J. Environ. Sci. 2012, 24 (11), 1979–1984. DOI: 10.1016/S1001-0742(11)61022-X
- 32 V. Nafisi, M.-B. Hägg, J. Membr. Sci. 2014, 459, 244–255. DOI: 10.1016/j.memsci.2014.02.002
- 33 J.-Y. Kim, J. Kim, S.-T. Yang, W.-S. Ahn, Fuel 2013, 108, 515–520. DOI: 10.1016/j.fuel.2012.12.020
- 34 B. Dutcher, M. Fan, S. Cui, X.-D. Shen, Y. Kong, A. G. Russell, P. McCurdy, M. Giotto, Int. J. Greenhouse Gas Control 2013, 18, 51–56. DOI: 10.1016/j.ijggc.2013.06.011
- 35 G. Qi, L. Fu, E. P. Giannelis, Nat. Commun. 2014, 5, 5796. DOI: 10.1038/ncomms6796
- 36 M. A. Sakwa-Novak, C.-J. Yoo, S. Tan, F. Rashidi, C. W. Jones, ChemSusChem 2016, 9 (14), 1859–1868. DOI: 10.1002/cssc.201600404
- 37 Y. Fan, R. P. Lively, Y. Labreche, F. Rezaei, W. J. Koros, C. W. Jones, Int. J. Greenhouse Gas Control 2014, 21, 61–71. DOI: 10.1016/j.ijggc.2013.11.021
- 38 S. A. Nouh, K. K. Lau, A. M. Shariff, K. KuShaari, Chem. Eng. Technol. 2013, 36 (2), 277–286. DOI: 10.1002/ceat.201200526
- 39 P. Bollini, N. A. Brunelli, S. A. Didas, C. W. Jones, Ind. Eng. Chem. Res. 2012, 51 (46), 15145–15152. DOI: 10.1021/ie301790a
- 40 Y. J. Wu, P. Li, J. G. Yu, A. F. Cunha, A. E. Rodrigues, Chem. Eng. Technol. 2013, 36 (4), 567–574. DOI: 10.1002/ceat.201200694
- 41 T. Asadi, M. R. Ehsani, A. M. Ribeiro, J. M. Loureiro, A. E. Rodrigues, Chem. Eng. Technol. 2013, 36 (7), 1231–1239. DOI: 10.1002/ceat.201300046
- 42 H. Yi, B. Huang, X. Tang, K. Li, Q. Yuan, R. Lai, P. Wang, Chem. Eng. Technol. 2014, 37 (6), 1049–1054. DOI: 10.1002/ceat.201300749
- 43 D. Gómez-Díaz, J. M. Navaza, Chem. Eng. Technol. 2013, 36 (11), 1853–1858. DOI: 10.1002/ceat.201300172
- 44 J.-S. Lee, J.-H. Kim, J.-T. Kim, J.-K. Suh, J.-M. Lee, C.-H. Lee, J. Chem. Eng. Data 2002, 47 (5), 1237–1242. DOI: 10.1021/je020050e
- 45 Y. Guo, C. Zhao, C. Li, Chem. Eng. Technol. 2015, 38 (5), 891–899. DOI: 10.1002/ceat.201400383
- 46 Z. Bacsik, N. Ahlsten, A. Ziadi, G. Zhao, A. E. Garcia-Bennett, B. Martín-Matute, N. Hedin, Langmuir 2011, 27 (17), 11118–11128. DOI: 10.1021/la202033p
- 47 G. Qi, L. Fu, B. H. Choi, E. P. Giannelis, Energy Environ. Sci. 2012, 5 (6), 7368–7375. DOI: 10.1039/C2EE21394J
- 48 M. Al-Marri, M. Khader, M. Tawfik, G. Qi, E. Giannelis, Langmuir 2015, 31 (12), 3569–3576. DOI: 10.1021/acs.langmuir.5b00189
- 49 X. Wang, V. Schwartz, J. C. Clark, X. Ma, S. H. Overbury, X. Xu, C. Song, J. Phys. Chem. C 2009, 113 (17), 7260–7268. DOI: 10.1021/jp809946y
- 50 M. J. Al-Marri, M. M. Khader, E. P. Giannelis, M. F. Shibl, J. Mol. Model. 2014, 20 (12), 2518. DOI: 10.1007/s00894-014-2518-8
- 51 P. A. Chandan, J. E. Remias, K. Liu, Int. J. Greenhouse Gas Control 2014, 31, 61–66. DOI: 10.1016/j.ijggc.2014.09.028
- 52 H. Kajiro, A. Kondo, K. Kaneko, H. Kanoh, Int. J. Mol. Sci. 2010, 11 (10), 3803–3845. DOI: 10.3390/ijms11103803
- 53 A. J. Fletcher, E. J. Cussen, D. Bradshaw, M. J. Rosseinsky, K. M. Thomas, J. Am. Chem. Soc. 2004, 126 (31), 9750–9759. DOI: 10.1021/ja0490267
- 54 C. Capellos, B. H. J. Bielski, Kinetic Systems: Mathematical Description of Chemical Kinetics in Solution, Robert E. Krieger Publishing Company, Huntington, NY 1980.