Size and Shape of Calcium Alginate Beads Produced by Extrusion Dripping
Corresponding Author
B.-B. Lee
Universiti Malaysia Perlis, School of Bioprocess Engineering, Arau, Perlis, Malaysia
Universiti Malaysia Perlis, School of Bioprocess Engineering, Arau, Perlis, MalaysiaSearch for more papers by this authorP. Ravindra
Universiti Malaysia Sabah, School of Engineering and Information Technology, Kota Kinabalu, Sabah, Malaysia
Search for more papers by this authorE.-S. Chan
Monash University Malaysia, School of Engineering, Chemical Engineering Discipline, Bandar Sunway, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
B.-B. Lee
Universiti Malaysia Perlis, School of Bioprocess Engineering, Arau, Perlis, Malaysia
Universiti Malaysia Perlis, School of Bioprocess Engineering, Arau, Perlis, MalaysiaSearch for more papers by this authorP. Ravindra
Universiti Malaysia Sabah, School of Engineering and Information Technology, Kota Kinabalu, Sabah, Malaysia
Search for more papers by this authorE.-S. Chan
Monash University Malaysia, School of Engineering, Chemical Engineering Discipline, Bandar Sunway, Selangor, Malaysia
Search for more papers by this authorAbstract
Alginate hydrogel beads are widely used as an encapsulation medium for biomedical, bioprocessing, and pharmaceutical applications. The size and shape of the beads are often critically controlled since in many usages the beads are monodisperse in size and spherical in shape. Extrusion dripping is a well-known method to produce alginate beads. Nevertheless, the production of beads of desired size and spherical shape is often achieved based on one's experience or trial and error. An overview is provided on alginate properties, formulation and preparation of alginate and gelling solutions, production conditions, and post-production treatment that may influence the bead size and shape. Various methods of bead size and shape measurement are also discussed.
References
- 1 E.-S. Chan, B.-B. Lee, P. Ravindra, D. Poncelet, J. Colloid Interface Sci. 2009, 338, 63–72.
- 2 E.-S. Chan, Z.-H. Yim, S.-H. Phan, R. F. Mansa, P. Ravindra, Food Bioprod. Process. 2010, 88, 195–201.
- 3 E.-S. Chan, Carbohydr. Polym. 2011, 84, 1267–1275.
- 4 C. Heinzen, A. Berger, I. Marison, in Fundamentals of Cell Immobilization Biotechnology (Eds: V. Nedovic, R. Willaert), Kluwer Academic Publishers, London 2004.
- 5 H. A. Al-Hajry, S. A. Al-Maskry, L. A. Al-Kharousi, O. El-Mardi, W. H. Shayya, M. F. A. Goosen, Biotechnol. Progr. 1999, 15, 768–774.
- 6 J. W. Woo, H. J. Roh, H. D. Park, C. L. Ji, Y. B. Lee, S. B. Kim, Food Sci. Biotechnol. 2007, 16, 715–721.
- 7 U. Jahnz, P. Wittlich, U. Prusse, K.-D. Vorlop, in Engineering and Manufacturing for Biotechnology (Eds: M. Hofman, P. Thonart), Kluwer Academic Publishers, Amsterdam 2001.
- 8 M. E. Lyn, D. Y. Ying, Ind. Eng. Chem. Res. 2010, 49, 1986–1990.
- 9 T. Waluga, S. Scholl, Chem. Eng. Technol. 2013, 36, 681–686.
- 10 D. Serp, E. Cantana, C. Heinzen, U. von Stockar, I. A. Marison, Biotechnol. Bioeng. 2000, 70, 41–53.
- 11 D. Poncelet, R. J. Neufeld, in Immobilized Cells: Basics and Applications (Eds: R. H. Wijffels, R. M. Buitelaar, C. Bucke, J. Tramper), Elsevier Science B.V., Amsterdam 1996.
- 12 C. Dulieu, D. Poncelet, R. J. Neufeld, in Cell Encapsulation Technology and Therapeutics (Eds: W. M. Kuhtreiber, R. P. Lanza, W. L. Chick), Birkhäuser, Boston 1999.
- 13 P. Del Gaudio, P. Colombo, G. Colombo, P. Russo, F. Sonvico, Int. J. Pharm. 2005, 302, 1–9.
- 14 D. Poncelet, V. G. Babak, R. J. Neufeld, M. F. A. Goosen, B. Burgarski, Adv. Colloid Interface Sci. 1999, 79, 213–228.
- 15 G. Manfre, R. W. Whorlow, Brit. J. Appl. Phys. 1967, 18, 893–844.
- 16 T. I. Klokk, J. E. Melvik, J. Microencapsulation 2002, 19, 415–424.
- 17 B. L. Strand, O. Gaserod, B. Kulseng, T. Espevik, G. Skjak-Braek, J. Microencapsulation 2002, 19, 615–630.
- 18 E. P. Herrero, E. M. M. Del Valle, M. A. Galan, Chem. Eng. J. 2006, 117, 137–142.
- 19 K. S. Huang, C. H. Yang, Y. S. Lin, C. Y. Wang, K. Lu, Y. F. Chang, Y. L. Wang, Drug Delivery Transl. Res. 2011, 1, 289–298.
- 20 A. Shilpa, S. S. Agrawal, A. R. Ray, J. Macromol. Sci., Rev. Macromol. Chem. 2003, 43, 187–221.
- 21 H. Watanabe, T. Matsuyama, H. Yamamoto, J. Electrost. 2003, 57, 183–197.
- 22 J. Xie, C. H. Wang, J. Colloid Interface Sci. 2007, 312, 247–255.
- 23 H. Brandenberger, F. Widmer, J. Biotechnol. 1998, 63, 73–80.
- 24 D. Lewinska, S. Rosinski, A. Werynski, Artif. Cells, Blood Substitutes, Immobilization Biotechnol. 2004, 32, 41–53.
- 25 I. Meiser, S. C. Müller, M. M. Gepp, H. Zimmermann, F. Ehrhart, IFMBE Proc. 2008, 22, 2255–2258.
- 26 Q. Deng, A. V. Anilkumar, T. G. Wang, J. Colloid Interface Sci. 2009, 333, 523–532.
- 27 D. Poncelet, F. Davarci, M. Sayad, S. Guessasma, in Bioencapsulation Innovations, Bioencapsulation Research Group, Nantes 2011.
- 28 S. Pregent, S. Adams, M. F. Butler, T. A. Waigh, J. Colloid Interface Sci. 2009, 331, 163–173.
- 29 P. Smrdel, M. Bogataj, A. Mrhar, Sci. Pharm. 2008, 76, 77–89.
- 30 T. Murakata, H. Honma, S. Nakazato, C. Kuroda, S. Sato, J. Chem. Eng. Jpn. 2001, 34, 299–305.
- 31 A. Buthe, W. Hartmeier, M. B. Ansorge-Schumacher, J. Microencapsulation 2004, 21, 865–876.
- 32 J. Dohnal, F. Stepanek, Powder Technol. 2010, 200, 254–259.
- 33 W. F. Kendall, Jr., M. D. Darrabie, H. M. El-Shewy, E. C. Opara, J. Microencapsulation 2004, 21, 821–828.
- 34 Y. A. Mørch, I. Donati, B. L. Strand, G. Skjak-Bræk, Biomacromolecules 2006, 7, 1471–1480.
- 35 G. Klock, A. Pfeffermann, C. Ryser, P. Grohn, B. Kuttler, H.-J. Hahn, U. Zimmermann, Biomaterials 1997, 18, 707–713.
- 36 N. E. Simpson, S. C. Grant, S. J. Blackband, I. Constantinidis, Biomaterials 2003, 24, 4941–4948.
- 37 B. Thu, O. Smidsrod, G. Skjak-Braek, in Immobilized Cells: Basics and Applications (Eds.: R. H. Wijffels, R. M. Buitelaar, C. Bucke, J. Tramper), Elsevier Science B.V., Amsterdam 1996.
- 38 W. R. Gombotz, S. F. Wee, Adv. Drug Delivery Rev. 1998, 31, 267–285.
- 39 N. E. Simpson, C. L. Stabler, C. P. Simpson, A. Sambanis, I. Constantinidis, Biomaterials 2004, 25, 2603–2610.
- 40 S. Takka, F. Acarturk, J. Microencapsulation 1999, 16, 275–290.
- 41 J. Chrastil, J. Agric. Food Chem. 1991, 39, 874–876.
- 42 D. B. Seifert, J. A. Philips, Biotechnol. Progr. 1997, 13, 562–568.
- 43 N. M. Velings, M. M. Mestdagh, Polym. Gels Networks 1995, 3, 311–330.
- 44 A. W. Hartman, R. U. Nesbitt, F. M. Smith, Jr., N. O. Nuessle, J. Pharm. Sci. 1975, 64, 802–805.
- 45 A. Martinsen, G. Skjak-Braek, O. Smidsrod, Biotechnol. Bioeng. 1989, 33, 79–89.
- 46 C. Ouwerx, N. Velings, M. M. Mestdagh, M. A. V. Axelos, Polym. Gels Networks 1998, 6, 393–408.
- 47 G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, M. Rinaudo, Biomaterials 1999, 20, 1427–1435.
- 48 C. Stabler, K. Wilks, A. Sambanis, I. Constantinidis, Biomaterials 2001, 22, 1301–1310.
- 49 M. F. A. Goosen, in Applications of Cell Immobilisation Biotechnology (Eds: V. Nedovic, R. Willaert), Springer, Berlin 2005.
- 50 A. Gautier, B. Carpentier, M. Dufresne, Q. Vu Dinh, P. Paullier, C. Legallais, Eur. Cell. Mater. 2011, 21, 94–106.
- 51 O. Smidsrod, G. Skjak-Braek, Tibtech 1990, 8, 71–78.
- 52 V. G. Babak, E. A. Skotnikova, L.G. Lukina, S. Pelletier, P. Hubert, E. Dellacherie, J. Colloid Interface Sci. 2000, 225, 505–510.
- 53 B.-B. Lee, E.-S. Chan, P. Ravindra, T. A. Khan, Polym. Bull. 2012, 69, 471–489.
- 54 K. Y. Lee, T. R. Heo, Appl. Environ. Microbiol. 2000, 66, 869–873.
- 55 M. F. A. Goosen, E. S. E. Mahmud, A. S. Al-Ghafri, H. A. Al-Hajri, Y. S. Al-Sinani, B. Bugarski, in Methods in Biotechnology 1, Immobilization of Enzymes and Cells (Eds.: G. F. Bickerstaff), Humana Press Inc., Totowa, NJ 1997.
- 56 Y. Murata, K. Nakada, E. Miyamoto, S. Kawashima, S.-H. Seo, J. Controlled Release 1993, 23, 21–26.
- 57 W. J. Leo, A. J. McLoughlin, D. M. Malone, Biotechnol. Prog. 1990, 6, 51–53.
- 58 K. I. Draget, G. Skjak-Braek, O. Smidsrod, Int. J. Biol. Macromol. 1997, 21, 47–55.
- 59 K. I. Draget, O. Smidsrod, G. Skjak-Braek, in Biology, Chemistry, Biotechnology, Application, Polysaccharides I (Polysaccharides from Prokaryotes), Polysaccharides II (Polysaccharides from Eukaryotes) (Eds: A. Steinbüchel, E. J. Vandomme, S. De Baets), Wiley-VCH Verlag GmbH, Weinheim 2002.
- 60 W. P. Voo, P. Ravindra, B. T. Tey, E. S. Chan, J. Biosci. Bioeng. 2011, 111, 294–299.
- 61 G. A. King, A. J. Daugulis, M. F. A. Goosen, P. Faulkner, D. Bayly, Biotechnol. Bioeng. 1989, 34, 1085–1091.
- 62 T. Yotsuyanagi, T. Ohkubo, T. Ohhshi, K. Ikeda, Chem. Pharm. Bull. 1987, 35, 1555–1563.
- 63 P. Gacesa, Carbohydr. Polym. 1998, 8, 161–182.
- 64 W. Sabra, W. Deckwer, in Polysaccharides. Structural Diversity and Functional Versatility, 2nd ed. (Ed: D. Severian), Marcel Dekker, New York 1998.
- 65 L. Chen, G. E. Remondetto, M. Subirade, Trends Food. Sci. Technol. 2006, 17, 272–283.
- 66 H. Yang, J. R. Wright, Jr., in Cell Encapsulation Technology and Therapeutics (Eds.: W. M. Kuhtreiber, R. P. Lanza, W. L. Chick), Birkhäuser, Boston 1999.
- 67 M. I. Brachkova, M. A. Duarte, J. F. Pinto, Eur. J. Pharm. Sci. 2010, 41, 589–596.
- 68 J. C. Ogbonna, in Fundamentals of Cell Immobilization Biotechnology (Eds.: V. Nedovic, R. Willaert), Kluwer Academic Publishers, London 2004.
- 69 S. Peretz, Rom. J. Phys. 2004, 49, 857–865.
- 70 J. S. Ryu, Y. J. Lee, S. I. Choi, J. W. Lee, T. R. Heo, Food Sci. Biotechnol. 2005, 14, 566–571.
- 71 B.-B. Lee, R. Pogaku, E.-S. Chan, Chem. Eng. Commun. 2008, 195, 889–924.
- 72 W.-K. Yu, T.-B. Yim, K.-Y. Lee, T.-R. Heo, Biotechnol. Bioprocess. Eng. 2001, 6, 133–138.
- 73 I. Rousseau, D. Le Cerf, L. Picton, J. F. Argillier, G. Müller, Eur. Polym. J. 2004, 40, 2709–2715.
- 74 U. Prusse, L. Bilancetti, M. Bucko, B. Bugarski, J. Bukowski, P. Gemeiner, D. Lewinska, V. Manojlovic, B. Massart, C. Nastruzzi, V. Nedovic, D. Poncelet, S. Siebenhaar, L. Tobler, A. Tosi, A. Vikartovska, K. D. Vorlop, Chem. Pap. 2008, 62, 364–374.
- 75 H. Moghadam, M. Samimi, A. Samimi, M. Khorram, Particuology 2008, 6, 271–275.
- 76 T. Fujimatsu, H. Fujita, M. Hirota, O. Okada, J. Colloid Interface Sci. 2003, 264, 212–220.
- 77
U. Pruesse,
U. Jahnz,
P. Wittlich,
K.-D. Vorlop,
Chem. Ind.
2003,
57,
636–640.
10.2298/HEMIND0312636P Google Scholar
- 78 H. Zimmermann, M. Hillgartner, B. Manz, P. Feilen, F. Brunnenmeier, U. Leinfelder, M. Weber, H. Cramer, S. Schneider, C. Hendrich, F. Volke, U. Zimmermann, Biomaterials 2003, 24, 2083–2096.
- 79 C.-K. Kim, E.-J. Lee, Int. J. Pharm. 1992, 79, 11–19.
- 80 S. K. Bajpai, S. Sharma, React. Funct. Polym. 2004, 59, 129–140.
- 81 G. Fundueanu, E. Esposito, D. Mihai, A. Carpov, J. Desbrieres, M. Rinaudo, C. Nastruzzi, Int. J. Pharm. 1998, 170, 11–21.
- 82 A. Kikuchi, M. Kawabuchi, A. Watanabe, M. Sugihara, Y. Sakurai, T. Okano, J. Controlled Release 1999, 58, 21–28.
- 83 A. C. Hulst, H. J. H. Hens, R. M. Buitelaar, J. Tramper, Biotechnol. Tech. 1989, 3, 199–204.
- 84 M. Li, D. Wilkinson, K. Patchigolla, Part. Sci. Technol. 2005, 23, 265–284.
- 85 B. Bugarski, Q. L. Li, M. F. A. Goosen, D. Poncelet, R. J. Neufeld, G. Vunjak, AIChE J. 1994, 40, 1026–1031.
- 86 C. Schwinger, S. Koch, U. Jahnz, P. Wittlich, N. G. Rainov, J. Kressler, J. Microencapsulation 2002, 19, 272–280.
- 87
C. Leigh Herran,
Y. Huang,
J. Manuf. Processes
2012,
14,
98–106.
10.1016/j.jmapro.2011.11.001 Google Scholar
- 88 A. Nussinovitch, in Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications (Ed: A. Nussinovitch), Springer Science Business Media, New York 2010.
- 89 H. T. Pu, R. Y. K. Yang, Biotechnol. Bioeng. 1988, 32, 891–896.
- 90 F. Yang, K. Wang, Z. He, Int. J. Pharm. 2005, 298, 206–210.
- 91 T. Gotoh, K. Matsushima, K. I. Kikuchi, Chemosphere 2004, 55, 57–64.
- 92 S. Rosinaski, I. Marison, D. Hunkeler, G. Grigorescu, D. Lewinska, L. G. Ritzen, H. Viernstein, E. Teunou, P. Poncelet, Z. Zhang, X. Fan, D. Serp, J. Mircoencapsulation 2002, 19, 641–659.
- 93 C. Zohar-Perez, I. Chet, A. Nussinovitch, Food Hydrocolloid 2004, 18, 249–258.
- 94
E. Doherty Speirs,
P.J. Halling,
B. McNeil,
Appl. Microbiol. Biotechnol.
1995,
43,
440–444.
10.1007/BF00218446 Google Scholar
- 95 A. Nussinovitch, Z. Gershon, Food Hydrocolloids 1996, 10, 263–266.
- 96 S. S. Sahin, S. G. Sumnu, Physical Properties of Foods, Springer Science Business Media, New York 2006.
- 97 A. Martinsen, I. Storro, G. Skjak-Braek, Biotechnol. Bioeng. 1992, 39, 186–194.
- 98 L. S. Kontturi, M. Yliperttula, P. Toivanen, A. Määttä, A. M. Määttä, A. Urtti, J. Controlled Release 2011, 152, 376–381.
- 99 T. Y. Sheu, R. T. Marshall, J. Food. Sci. 1993, 54, 557–561.
- 100 D.-H. Park, J.-M. Cha, H.-W. Ryu, G.-W. Lee, E.-Y. Yu, J.-L. Rhee, J.-J. Park, S.-W. Kim, I.-W. Lee, Y.-L. Joe, Y.-W. Ryu, B.-K. Hur, J.-K. Park, K. Park, Biochem. Eng. J. 2002, 11, 167–173.
- 101 B. Junker, Bioprocess. Biosyst. Eng. 2006, 29, 185–206.
- 102 L. Wojnar, Image Analysis Applications in Material Engineering, CRC Press, Boca Raton, FL 1999.