Optimization of a Multiple Impinging Jets Cavitation Reactor Using Zero-Valent Iron Powder as Catalyst
J. Basiri Parsa
Bu-Ali Sina University, Department of Applied Chemistry, Faculty of Chemistry, Hamedan, Iran
Search for more papers by this authorCorresponding Author
S. A. Ebrahimzadeh Zonouzian
Bu-Ali Sina University, Department of Applied Chemistry, Faculty of Chemistry, Hamedan, Iran
Bu-Ali Sina University, Department of Applied Chemistry, Faculty of Chemistry, Hamedan, IranSearch for more papers by this authorJ. Basiri Parsa
Bu-Ali Sina University, Department of Applied Chemistry, Faculty of Chemistry, Hamedan, Iran
Search for more papers by this authorCorresponding Author
S. A. Ebrahimzadeh Zonouzian
Bu-Ali Sina University, Department of Applied Chemistry, Faculty of Chemistry, Hamedan, Iran
Bu-Ali Sina University, Department of Applied Chemistry, Faculty of Chemistry, Hamedan, IranSearch for more papers by this authorAbstract
The effect of a combination of impinging jets and hydrodynamic cavitation technology was investigated by a multiple impinging jets cavitation reactor (MIJCR). Zero-valent iron (ZVI) powder and rhodamine B were chosen as heterogeneous catalyst and model pollutant, respectively. ZVI addition resulted in more than five times higher decolorization efficiency compared to runs without ZVI. In situ generation of Fenton reagents suggested an advanced Fenton process to explain the enhancing effect of the applied catalyst. Impinging jets and aeration led to significant enhancement of the process, and optimum values of inter-nozzle distance and initial catalyst concentration favored the decolorization of rhodamine B.
References
- 1 P. R. Gogate, A. B. Pandit, Adv. Environ. Res. 2004, 8 (3–4), 501–551.
- 2 H. Lee, S. H. Park, S. J. Kim, B. H. Kim, H. S. Yoon, J. S. Kim, S. C. Jung, Prog. Org. Coat. 2012, 74 (4), 758–763.
- 3 Y. Liu, J. Pan, M. Du, A. Tang, Q. Wang, Chem. Eng. Technol. 2013, 36 (5), 781–787.
- 4 M. Ureña de Vivanco, M. Rajab, C. Heim, T. Letzel, B. Helmreich, Chem. Eng. Technol. 2013, 36 (2), 355–361.
- 5 V. K. Saharan, A. B. Pandit, P. S. Satish Kumar, S. Anandan, Ind. Eng. Chem. Res. 2011, 51 (4), 1981–1989.
- 6 P. R. Gogate, Chem. Eng. Process. 2008, 47 (4), 515–527.
- 7 P. R. Gogate, R. K. Tayal, A. B. Pandit, Curr. Sci. 2006, 91 (1), 35–46.
- 8 M. Sivakumar, A. B. Pandit, Ultrason. Sonochem. 2002, 9 (3), 123–131.
- 9 L. Mezule, S. Tsyfansky, V. Yakushevich, T. Juhna, Desalination 2009, 248 (1–3), 152–159.
- 10 A. Pal, A. Verma, S. S. Kachhwaha, S. Maji, Renewable Energy 2010, 35 (3), 619–624.
- 11 D. V. Pinjari, A. B. Pandit, Ultrason. Sonochem. 2010, 17 (5), 845–852.
- 12 V. K. Saharan, M. P. Badve, A. B. Pandit, Chem. Eng. J. 2011, 178, 100–107.
- 13 D. H. Bremner, S. D. Carlo, A. G. Chakinala, G. Cravotto, Ultrason. Sonochem. 2008, 15 (4), 416–419.
- 14 A. A. Pradhan, P. R. Gogate, J. Hazard. Mater. 2010, 173 (1–3), 517–522.
- 15 K. P. Mishra, P. R. Gogate, Sep. Purif. Technol. 2010, 75 (3), 385–391.
- 16 X. Wang, J. Wang, P. Guo, W. Guo, C. Wang, J. Hazard. Mater. 2009, 169 (1–3), 486–491.
- 17 A. M. Dehkordi, I. Safari, A. A. Ebrahimi, Ind. Eng. Chem. Res. 2009, 48 (6), 2861–2869.
- 18 Y. Wu, Q. Li, F. Li, Chem. Eng. Sci. 2007, 62 (6), 1814–1824.
- 19 J. Saien, S. A. E. Zonouzian, A. M. Dehkordi, Chem. Eng. Sci. 2006, 61 (12), 3942–3950.
- 20 A. M. Dehkordi, A. A. Ebrahimi, Ind. Eng. Chem. Res. 2009, 48 (23), 10619–10626.
- 21 S. J. Royaee, M. Sohrabi, P. Jabari Barjesteh, Chem. Eng. Res. Des. 2012, 90 (11), 1923–1929.
- 22 H. Bader, V. Sturzenegger, J. Hoigné, Water Res. 1988, 22 (9), 1109–1115.
- 23 Z.-D. Meng, L. Zhu, J.-G. Choi, C. Y. Park, W.-C. Oh, Ultrason. Sonochem. 2012, 19 (1), 143–150.
- 24 J. B. Parsa, S. A. E. Zonouzian, Ultrason. Sonochem. 2013, 20 (6), 1442–1449.
- 25 P. N. Patil, P. R. Gogate, Sep. Purif. Technol. 2012, 95, 172–179.
- 26 M.-F. Hou, L. Liao, W.-D. Zhang, X.-Y. Tang, H.-F. Wan, G.-C. Yin, Chemosphere 2011, 83 (9), 1279–1283.
- 27 P. Braeutigam, Z. L. Wu, A. Stark, B. Ondruschka, Chem. Eng. Technol. 2009, 32 (5), 745–753.
- 28 S. N. Katekhaye, P. R. Gogate, Chem. Eng. Process. Process Intensif. 2011, 50 (1), 95–103.
- 29 Y. L. Pang, A. Z. Abdullah, S. Bhatia, Desalination 2011, 277 (1–3), 1–14.
- 30 P. R. Gogate, I. Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N. P. Vichare, A. B. Pandit, AIChE J. 2001, 47 (11), 2526–2538.
- 31 H. S. El-Desoky, M. M. Ghoneim, N. M. Zidan, Desalination 2010, 264 (1–2), 143–150.
- 32 P. R. Gogate, A. B. Pandit, Rev. Chem. Eng. 2001, 17 (1), 1–85.
- 33 Z. A. Zhou, Z. Xu, J. A. Finch, H. Hu, S. R. Rao, Int. J. Miner. Process. 1997, 51 (1–4), 139–149.
- 34 Y. Segura, F. Martínez, J. A. Melero, R. Molina, R. Chand, D. H. Bremner, Appl. Catal., B 2012, 113–114, 100–106.
- 35 J. Saien, V. Moradi, J. Ind. Eng. Chem. 2012, 18 (4), 1293–1300.
- 36 K. C. Namkung, A. E. Burgess, D. H. Bremner, H. Staines, Ultrason. Sonochem. 2008, 15 (3), 171–176.
- 37 F. Fu, Q. Wang, B. Tang, J. Hazard. Mater. 2010, 174 (1–3), 17–22.
- 38 P. M. Kanthale, P. R. Gogate, A. B. Pandit, A. M. Wilhelm, Ultrason. Sonochem. 2005, 12 (6), 441–452.
- 39 S. Arrojo, Y. Benito, Ultrason. Sonochem. 2008, 15 (3), 203–211.
- 40 M. A. Sobati, A. M. Dehkordi, M. Shahrokhi, A. A. Ebrahimi, Ind. Eng. Chem. Res. 2010, 49 (19), 9339–9348.
- 41 P. Braeutigam, M. Franke, Z. L. Wu, B. Ondruschka, Chem. Eng. Technol. 2010, 33 (6), 932–940.
- 42 P. R. Gogate, A. B. Pandit, AIChE J. 2000, 46 (8), 1641–1649.
- 43 P. R. Gogate, J. Environ. Manage. 2007, 85 (4), 801–815.