Lignin Depolymerization and Conversion: A Review of Thermochemical Methods
M. P. Pandey
Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
University of Science and Technology, Daejeon, Republic of Korea
Search for more papers by this authorCorresponding Author
C. S. Kim
Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of KoreaSearch for more papers by this authorM. P. Pandey
Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
University of Science and Technology, Daejeon, Republic of Korea
Search for more papers by this authorCorresponding Author
C. S. Kim
Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
Clean Energy Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of KoreaSearch for more papers by this authorAbstract
The structure of lignin suggests that it can be a valuable source of chemicals, particularly phenolics. However, lignin depolymerization with selective bond cleavage is the major challenge for converting it into value-added chemicals. Pyrolysis (thermolysis), gasification, hydrogenolysis, chemical oxidation, and hydrolysis under supercritical conditions are the major thermochemical methods studied with regard to lignin depolymerization. Pyrolytic oil and syngases are the primary products obtained from pyrolysis and gasification. A significant amount of char is also produced during pyrolysis. Thermal treatment in a hydrogen environment seems very promising for converting lignin to liquid fuel and chemicals like phenols, while oxidation can produce phenolic aldehydes. Reaction severity, solvents, and catalysts are the factors of prime importance that control yield and composition of the product.
References
- 1 H. Yang et al., Fuel 2007, 86, 1781.
- 2 E. A. B. Silva et al., Chem. Eng. Res. Des. 2009, 87, 1276.
- 3 G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044.
- 4 P. A. M. Claassen et al., Appl. Microbiol. Biotechnol. 1999, 52, 741.
- 5 S. Zhang et al., Energy Fuels 2009, 23, 1759.
- 6 J. Lee, J. Biotechnol. 1997, 56, 1.
- 7 B. Kamm, M. Kamm, Appl. Microbiol. Biotechnol. 2004, 64, 137.
- 8 B. E. Dale, S. Kim, in Biorefineries – Industrial Process and Products (Eds: B. Kamm, P. R. Gruber, M. Kamm), Vol. 1, Wiley-VCH Verlag, Weinheim 2006.
- 9 A. T. W. M. Hendriks, G. Zeeman, Bioresour. Technol. 2007, 100, 10.
- 10 A. Effendi, H. Gerhauser, A. V. Bridgwater, Renew. Sust. Energ. Rev. 2008, 12, 2092.
- 11 M. Kleinert, T. Barth, Energy Fuels 2008, 22, 1371.
- 12 G. Várhegyi, M. J. Antal, Jr., E. Jakab, P. Szabó, J. Anal. Appl. Pyrolysis 1997, 42, 73.
- 13 C. A. Chen, H. Pakdel, C. Roy, Bioresour. Technol. 2001, 79, 277.
- 14 S. Reale, A. D. Tullio, N. Spreti, F. D. Angelis, Mass Spectrom. Rev. 2004, 23, 87.
- 15 J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
- 16 R. J. Evans, T. A. Milne, M. N. Soltys, J. Anal. Appl. Pyrolysis 1986, 9, 207.
- 17 E. Sjöström, Wood Chemistry – Fundamentals and Applications, 1st ed., Academic Press, Millbrae 1981.
- 18 G. Brunow, in Biorefineries – Industrial Processes and Products (Eds: B. Kamm, P. R. Gruber, M. Kamm), Vol. 2, Wiley-VCH Verlag, Weinheim 2006.
- 19 O. Derkacheva, D. Sukhov, Macromol. Symp. 2008, 265, 61.
- 20 E. Adler, Wood Sci. Technol. 1977, 11, 169.
- 21 R. C. Sun et al., J. Sci. Food Agric. 1999, 79, 1091.
- 22 D. Ibarra et al., J. Anal. Appl. Pyrolysis 2005, 74, 116.
- 23 T. Yan, Y. Xu, C. Yu, J. Appl. Polym. Sci. 2009, 114, 1896.
- 24 E. Dorrestijin, L. J. J. Laarhoven, I. W. C. E. Arends, P. Mulder, J. Anal. Appl. Pyrolysis 2000, 54, 153.
- 25 A. Sakakibara, Y. Sano, in Wood and Cellulose Chemistry (Eds: D. N.-S. Hon, N. Shiraishi), 2nd ed., Marcel Dekker, New York 2001.
- 26 G. Bentivenga, C. Bonini, M. D. Auria, A. D. Bona, Biomass Bioenergy 2003, 24, 233.
- 27 Q. Liu et al., J. Anal. Appl. Pyrolysis 2008, 82, 170.
- 28 D. J. Gardner, T. P. Schultz, G. D. McGinnis, J. Wood Chem. Technol. 1985, 5 (1), 85.
- 29 M. Windt et al., J. Anal. Appl. Pyrolysis 2009, 85, 38.
- 30 M. Saisu et al., Energy Fuels 2003, 17, 922.
- 31 V. Sricharoenchaikul, Bioresour. Technol. 2009, 100, 638.
- 32 D. C. Elliott, R. T. Hallen, J. Sealock, J. Anal. Appl. Pyrolysis 1984, 6, 299.
- 33 J. C. Villar, A. Caperos, F. Garcia-Ochoa, Wood Sci. Technol. 2001, 35, 245.
- 34 R. W. Thring, E. Chornet, R. P. Overend, Can. J. Chem. Eng. 1993, 71, 107.
- 35 J. C. Villar, A. Caperos, F. Garcia-Ochoa, J. Wood Chem. Technol. 1997, 17, 259.
- 36 Q. Xiang, Y. Y. Lee, Appl. Biochem. Biotechnol. 2001, 91–93, 71.
- 37 R. W. Thring, J. Breau, Fuel 1996, 75 (7), 795.
- 38 K. Kuroda, J. Anal. Appl. Pyrolysis 1994, 30, 173.
- 39 T. C. Drage, C. H. Vane, G. D. Abbott, Org. Geochem. 2002, 33, 1523.
- 40 K. Kuroda, J. Anal. Appl. Pyrolysis 2000, 53, 123.
- 41 K. Kuroda, T. Ashitani, K. Fujita, T. Hattori, J. Agric. Food. Chem. 2007, 55, 2770.
- 42 A. Vuori, J. B. Bredenberg, Ind. Eng. Chem. Res. 1987, 26, 359.
- 43 M. T. Klein, Ph.D. Thesis, Department of Chemical Engineering, Massachussetts Institute of Technology, Cambridge 1981.
- 44 M. T. Klein, P. S. Virk, Energy Fuels 2008, 22, 2175.
- 45 J. B. Binder et al., Biomass Bioenergy 2009, 33, 1122.
- 46 T. Barth, M. Kleinert, Chem. Eng. Technol. 2008, 31 (5), 773.
- 47 D. Ferdous, A. K. Dalai, S. K. Bej, R. W. Thring, Energy Fuels 2002, 16, 1405.
- 48 R. K. Sharma, J. B. Wooten, V. L. Baliga, X. Lin, W. G. Chan, M. R. Hajaligol, Fuel 2004, 83, 1469.
- 49 D. A. E. Butt, J. Anal. Appl. Pyrolysis 2006, 76, 38.
- 50 G. Jiang, D. J. Nowakowski, A. V. Bridgwater, Thermochim. Acta 2010, 498, 61.
- 51 R. W. Chan, B. B. Krieger, J. Appl. Polym. Sci. 1981, 26, 1533.
- 52 T. R. Nunn, J. B. Howard, J. P. Longwell, W. A. Peters, Ind. Eng. Chem. Process Des. Dev. 1985, 24, 844.
- 53 T. Cordero, J. M. Rodriguez-Maroto, J. Rodriguez-Mirasol, J. J. Rodriguez, Thermochim. Acta 1990, 164, 135.
- 54 J. R. Obst, J. Wood Chem. Technol. 1983, 3 (4), 377.
- 55 O. Faix, D. Meier, I. Grobe, J. Anal. Appl. Pyrolysis 1987, 11, 403.
- 56 C. Biermann, G. D. McGinnis, T. P. Schultz, J. Agric. Food Chem. 1987, 35, 713.
- 57 M. G. S. Chua, M. Wayman, Can. J. Chem. 1979, 57, 1141.
- 58 M. Kleen, G. Gellerstedt, J. Anal. Appl. Pyrolysis 1991, 19, 139.
- 59 K. Okuda, M. Umetsu, S. Takami, T. Adschiri, Fuel Process. Technol. 2004, 85, 803.
- 60 W. J. Connors, L. N. Johanson, K. V. Sarkanen, P. Winslow, Holzforschung 1980, 34, 29.
- 61 A. R. Gonçalves, U. Schuchardt, Appl. Biochem. Biotechnol. 2002, 98–100, 1213.
- 62 M. Kudsy, H. Kumazawa, E. Sada, Can. J. Chem. Eng. 1995, 73, 411.
- 63 F. Davoudzadeh, B. Smith, E. Avni, R. W. Coughlin, Holzforschung 1985, 39, 159.
- 64 A. Vuori, J. B. Bredenberg, Holzforschung 1988, 42 (3), 155.
- 65 M. Kleinert, T. Barth, Chem. Eng. Technol. 2008, 31 (5), 736.
- 66 D. Meier, R. Ante, O. Faix, Bioresour. Technol. 1992, 40, 171.
- 67 J. Piskorz, P. Majerski, D. Radlein, D. S. Scott, Energy Fuels 1989, 3, 723.
- 68 J. S. Shabtai, W. W. Zmierczak, E. Chornet, US Patent 5959167, 1999.
- 69 J. S. Shabtai, W. W. Zmierczak, E. Chornet, US Patent 6172272 B1, 2001.
- 70 J. S. Shabtai, W. W. Zmierczak, E. Chornet, D. K. Johnson, ASC Division of Fuel Chemistry 1999, 44 (2), 267.
- 71 W. W. Zmierczak, J. D. Miller, US Patent 119357, 2006.
- 72 J. E. Miller, L. Evans, A. Littlewolf, D. E. Trudell, Fuel 1999, 78, 1363.
- 73 H. E. Jegers, M. T. Klein, Ind. Eng. Chem. Process Des. Dev. 1985, 24, 173.
- 74 G. Gellerstedt, J. Li, I. Eide, M. Kleinert, T. Barth, Energy Fuels 2008, 22, 4240.
- 75 M. Kleinert, J. R. Gasson, T. Barth, J. Anal. Appl. Pyrolysis 2009, 85, 108.
- 76 D. Meier, J. Berns, C. Grünwald, O. Faix, J. Anal. Appl. Pyrolysis 1993, 25, 335.
- 77 A. Oasmaa, A. Johansson, Energy Fuels 1993, 7, 426.
- 78 P. Wild, R. Van der Laan, A. Kloekhorst, E. Heeres, Environ. Progr. Sust. Energy 2009, 28 (3), 461.
- 79 Z. Tang, Y. Zhang, Q. Guo, Ind. Eng. Chem. Res. 2010, 49, 2040.
- 80 Q. Xiang, Y. Y. Lee, Appl. Biochem. Biotechnol. 2000, 84–86, 153.
- 81 H. Bjørsvik, K. Norman, Org. Process Res. Dev. 1999, 3, 341.
- 82 H. Suzuki et al., J. Mater. Sci. 2006, 41, 1591.
- 83 A. L. Mathias, A. E. Rodrigues, Holzforschung 1995, 49 (3), 273.
- 84 M. P. Masingale et al., Bioresources 2009, 4 (3), 1139.
- 85 G. Wu, M. Heitz, J. Wood Chem. Technol. 1995, 15, 189.
- 86 C. Fargues, Á. Methias, A. Rodrigues, Ind. Eng. Chem. Res. 1996, 35, 28.
- 87 J. Zhang, H. Deng, L. Lin, Molecules 2009, 14, 2747.
- 88 A. R. Gonçalves, U. Schuchardt, Appl. Biochem. Biotechnol. 1999, 77–79, 127.
- 89 T. Voitl, P. Rudolf von Rohr, Ind. Eng. Chem. Res. 2010, 49, 520.
- 90 V. E. Tarabanko, D. V. Petukhov, G. E. Selyutin, Kinet. Catal. 2004, 45 (4), 569.
- 91 K. Ehara, D. Takada, S. Saka, J. Wood Sci. 2005, 51, 256.
- 92 T. Yoshida, Y. Matsumura, Ind. Eng. Chem. Res. 2001, 40, 5469.
- 93 T. M. Aida et al., Fuel 2002, 81, 1453.
- 94 K. Okuda et al., J. Phys. Condens. Matter 2004, 16, S1325.
- 95 Z. Fang et al., Bioresour. Technol. 2008, 99, 3424.
- 96 J. Tsujino, H. Kawamoto, S. Saka, Wood Sci. Technol. 2003, 37, 299.
- 97 M. Osada et al., Energy Fuels 2007, 21, 1854.
- 98 Y.-H. E. Sheu, R. G. Anthony, E. J. Soltes, Fuel Process. Technol. 1988, 19, 31.
- 99 R. K. Sharma, N. N. Bakhshi, Energy Fuels 1993, 7, 306.
- 100 J. D. Adjaye, N. N. Bakhshi, Fuel Process. Technol. 1995, 45, 161.
- 101 M. Watanabe et al., Fuel 2003, 82, 545.
- 102 S. Nenkova, T. Vasileva, K. Stanulov, Chem. Nat. Compd. 2008, 44, 182.
- 103 M. A. Ratcliff, D. K. Johnson, F. L. Posey, H. L. Chum, Appl. Biochem. Biotechnol. 1988, 17, 151.
- 104 D. Meier et al., Biomass Bioenergy 1994, 7, 99.
- 105 N. Yan et al., ChemSusChem 2008, 1, 626.
- 106 M. Nagy, K. David, G. J. P. Britovsek, A. J. Ragauskas, Holzforschung 2009, 63, 513.
- 107 F. G. Sales, L. C. A. Maranhão, N. M. Lima Filho, C. A. M. Abreu, Chem. Eng. Sci. 2007, 62, 5386.
- 108 S. Bhargava et al., Ind. Eng. Chem. Res. 2007, 46, 8652.
- 109 C.-L. Chen, E. A. Capanema, H. S. Gracz, J. Agric. Food Chem. 2003, 51, 1932.
- 110 W. Partenheimer, Adv. Synth. Catal. 2009, 351, 456.
- 111 D. K. Setua et al., Polym. Compos. 2000, 21, 988.
- 112 J. H. Lora, W. G. Glasser, J. Polym. Environ. 2002, 10, 39.