Use of Renewable Raw Materials in the Chemical Industry – Beyond Sugar and Starch
K. Muffler
Institute of Bioprocess Engineering, University of Kaiserslautern, Germany
Search for more papers by this authorR. Ulber
Institute of Bioprocess Engineering, University of Kaiserslautern, Germany
Search for more papers by this authorK. Muffler
Institute of Bioprocess Engineering, University of Kaiserslautern, Germany
Search for more papers by this authorR. Ulber
Institute of Bioprocess Engineering, University of Kaiserslautern, Germany
Search for more papers by this authorAbstract
Classical energy sources such as petroleum oil and natural gas make up the fundamental materials on which modern industrial chemical parks are based. According to the finite availability of these consuetudinary resources and due to the increasing demand for energy from developing countries and the related rise in prices of oil and natural gas, renewable resources must be considered as valuable alternatives. Discussions about climate change with regard to alternatives in energy production are preceded very fervidly but alternatives have to be examined from a matter-of-fact based economic and scientific point of view. Therefore, this review is focussed on alternative sources such as wood and other agricultural residues with respect to their potential as future energy resources as well as building blocks for chemical synthesis processes.
References
- 1 C. J. Campbell, Energy Policy 2006, 34, 131.
- 2 International Energy Agency, Analysis of the Impact of High Oil Prices on the Global Economy, 2004. http://www.iea.org/textbase/papers/2004/high_oil_prices.pdf
- 3 H. Röper, Mitt. – Ges. Detsch. Chem., Fachgruppe Umweltchem. Ökotoxikol. 2001, 7 (2), 6.
- 4 Royal Belgian Academy Council of Applied Science, Industrial Biotechnology and Sustainable Chemistry, 2004. http://www.europabio.org/documents/150104/bacas_report_en
- 5 R. Froböse, Nachr. Chem. 2004, 52, 660.
- 6 B. A. Torkay, in Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release 2000, Wiley-VCH, Weinheim 2000.
- 7 European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section, Brussels 2005. www.suschem.org
- 8 U.S. Department of Energy, Energy Efficiency and Renewable Energy, 2007. http://www1.eere.energy.gov/biomass/sugar_platform.html
- 9 R. Busch et al., Biotechnol. J. 2006, 1, 770.
- 10 G. Baron, M. Eichelsbacher, C. Hafke, Erdoel Kohle, Erdgas, Petrochem. Brennst.-Chem. 1981, 34, 288.
- 11 K.-D. Vorlop et al., SchrR Thüringer Landesanstalt Landwirtschaft 2002, 9, 16.
- 12 F. Asinger, Methanol – Chemie- und Energierohstoff, Springer Verlag, Berlin 1986.
- 13 J.-Y. Xin et al., Biocatal. Biotransform. 2004, 22, 225.
- 14 Methanol, Chem. Week, June 22, 2005, 33.
- 15 H. Hiller et al., in Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release 2006, Wiley-VCH, Weinheim 2006.
- 16 R. Kleerebezem, H. Macarie, Chem. Eng. 2003, 110, 56.
- 17 S. Kortekaas et al., J. Ferment. Bioeng. 1998, 86, 97.
- 18 L. Seghezzo et al., Water Sci. Technol. 2006, 54, 223.
- 19 G. A. Olah, A. Goeppert, G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy, Wiley-VCH, Weinheim 2006.
- 20 E. J. Nyns, in Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release 2000, Wiley-VCH, Weinheim 2000.
- 21 C. Da Costa Gomes, Notwendige Rahmenbedingungen für die Nutzung von Biogas als Kraftstoff in Deutschland, Kongress „Kraftstoffe der Zukunft“, Tagungsband, UFOP und BBE, 2006.
- 22 T. Ahrens, Landbauforsch. Voelkenrode 2007, 57, 71.
- 23 K. Kochloefl, in Handbook of Heterogenous Catalysts, Vol. 4 (Eds.: G. Ertl., H. Knörzinger, J. Weitkamp), Wiley-VCH, Weinheim 1997.
- 24 A. Pavone, Mega Methanol Plants, Report No. 43D, Process Economics Program, SRI Consulting, Menlo Park, California, 2003.
- 25 A. Demirbas, Prog. Energy Combust. Sci. 2007, 33, 1.
- 26 H. Nakagawa et al., JARQ 2007, 41, 173.
- 27 J. M. Norbeck, K. Johnson, The Hynol Process: A Promising Pathway for Renewable Production of Methanol, College of Engineering, Center of Environmental research and Technology, University of California, Riverside 2000.
- 28 M. V. Twigg, M. S. Spencer, Top. Catal. 2003, 22, 191.
- 29 Methanol Production and Use (Eds.: W.-H. Cheng, H. H. Kung), Marcel Dekker, New York 1994.
- 30 G. W. Roberts, D. M. Brown, T. H. Hsiung, J. J. Lewnard, Ind. Eng. Chem. Res. 1993, 32, 1610.
- 31 A. Cybulski, Catal. Rev. 1994, 36, 557.
- 32 Commercial-Scale demonstration of the Liquid Phase Methanol (LPMEOH™) Process: Final Report, Prepared by Air Products Liquid Phase Conversion Company for the US DOE National Energy Technology Laboratory, 2003.
- 33 J.-Y. Xin et al., Biochem. Biophys. Res. Commun. 2002, 295, 182.
- 34 T. Furuto, M. Takeguchi, I. Okura, J. Mol. Catal. A: Chem. 1999, 144, 257.
- 35 P. K. Mehta, S. Mishra, T. K. Ghose, Biotechnol. Bioeng. 1991, 37, 551.
- 36 R. Obert, B. C. Dave, J. Am. Chem. Soc. 1999, 121, 12192.
- 37 J.-Y. Xin et al., J. Basic. Microbiol. 2007, 47, 426.
- 38 F. Wagner, Experientia 1977, 33, 110.
- 39 M. E. Lidstrom, D. I. Stirling, Annu. Rev. Microbiol. 1990, 44, 27.
- 40 J. L. Cereghino, J. M. Cregg, FEMS Microbiol. Rev. 2000, 24, 45.
- 41 J. M. Cregg, T. S. Vedvick, W. V. Raschke, Bio/Technology 1993, 11, 905.
- 42 G. P. Lin Cereghino, J. M. Cregg, Curr. Opin. Biotechnol. 1999, 10, 422.
- 43 S. Macauley-Patrick, M. L. Fazenda, B. McNeil, L. M. Harvey, Yeast 2005, 22, 249.
- 44 J. M. Cregg, J. Lin Cereghino, J. Shi, D. R. Higgins, Mol. Biotechnol. 2000, 16, 23.
- 45 O. Cos, R. Ramón, J. L. Montesinos, F. Valero, Microb. Cell. Fact. 2006, 5, 17.
- 46 G. Duménil et al., Biotechnol. Lett. 1979, 1, 371.
- 47 F. J. Schendel et al., US Patent 6 083 728, 2000.
- 48 J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, A Look Back at the U.S. Department of Energy's Aquatic Species Program – Biodiesel from Algae, National Renewable Energy Laboratory (NREL), 1998.
- 49 F. B. Metting, J. Ind. Microbiol. 1996, 17, 477.
- 50 P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, J. Biosci. Bioeng. 2006, 101, 87.
- 51 Y. Chisti, Biotechnol. Adv. 2007, 25, 294.
- 52 Shell in the US, Shell and HR Biopetroleum build facility to grow algae for biofuel, 2007. http://www.shell.com/home/content/us-en/news_and_library/press_releases/2007/hawaii_cellana_121107.html
- 53 R. L. Meier, in Solar Energy Research (Eds: F. Daniels, J. A. Duffie), Madison University Wisconsin Press, Madison 1955.
- 54 A. M. Henstra, J. Sipma, A. Rinzema, A. J. M. Stams, Curr. Opin. Biotechnol. 2007, 18, 200.
- 55 S. Atsumi, T. Hanai, J. C. Liao, Nature 2008, 451, 86.