Recent Advances in Catalyst Development for Enhanced p-Xylene Production via Toluene Methylation
Kanchan Guru
Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
Search for more papers by this authorNandana Chakinala
Department of Chemical Engineering, Chemical Reaction Engineering Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
Search for more papers by this authorCorresponding Author
Anand G. Chakinala
Department of Chemical Engineering, Chemical Reaction Engineering Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Praveen K. Surolia
Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorKanchan Guru
Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
Search for more papers by this authorNandana Chakinala
Department of Chemical Engineering, Chemical Reaction Engineering Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
Search for more papers by this authorCorresponding Author
Anand G. Chakinala
Department of Chemical Engineering, Chemical Reaction Engineering Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Praveen K. Surolia
Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, 303007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
p-Xylene is a key industrial chemical with increasing demand due to the shift in global markets toward petrochemicals. Although most p-xylene is currently produced through naphtha cracking or naphtha reforming, alternative and cost-effective manufacturing techniques are needed. Catalytic methylation of toluene using shape selective catalysts is a potential route to yield xylenes with great para selectivity. Recent research has focused on modifying catalysts to increase surface acidity, pore channels, and crystallinity, improving para selectivity and toluene conversion. However, challenges remain in designing effective shape selective catalysts without sacrificing catalytic activity and maximizing methanol utilization for increased p-xylene productivity. This review discusses recent developments in catalyst design and modification strategies for improved shape selectivity, including the influence of reaction conditions, kinetics, mechanism, and catalyst deactivation. The review concludes with a forward-looking perspective on developing, designing, and modifying catalysts to address gaps in the related research field.
Conflicts of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
There are no data to disclose.
References
- 1X. Zhao, T. G. Roberie, K. R. Rajagopalan, Appl. Catal. A 1996, 145, 407–418.
- 2T.-C. Tsai, S.-B. Liu, I. Wang, Appl. Catal. A 1999, 181, 355–398.
- 3C. Song, J. M. Garcés, Y. Sugi, Shape-Selective Catalysis: Chemicals Synthesis and Hydrocarbon Processing, ACS Publications, Washington 1999.
10.1021/bk-2000-0738 Google Scholar
- 4T. Odedairo, R. Balasamy, S. Al-Khattaf, Ind. Eng. Chem. Res. 2011, 50, 3169–3183.
- 5A. Nakhaei Pour, A. Mohammadi, J. Inorg. Organomet. Polym. Mater. 2021, 31, 2501–2510.
- 6F. J. Llopis, G. Sastre, A. Corma, J. Catal. 2006, 242, 195–206.
- 7A. Corma, C. Corell, J. Pérez-Pariente, J. Guil, R. Guil-López, S. Nicolopoulos, J. G. Calbet, M. Vallet-Regi, Zeolites 1996, 16, 7–14.
- 8F. J. Llopis, G. Sastre, A. Corma, J. Catal. 2004, 227, 227–241.
- 9A. Corma, J. Catal. 2003, 216, 298–312.
- 10T. Masukawa, T. Komatsu, T. Yashima, Zeolites 1997, 19, 429–433.
- 11N. Chen, W. Kaeding, F. Dwyer, J. Am. Chem. Soc. 1979, 101, 6783–6784.
- 12H. Liu, Y. Wang, H. Yuan, W. Luo, J. Inorg. Organomet. Polym. Mater. 2024, 35, 1679–1694.
- 13J.-H. Kim, T. Kunieda, M. Niwa, J. Catal. 1998, 173, 433–439.
- 14W. Tan, M. Liu, Y. Zhao, K. Hou, H. Wu, A. Zhang, H. Liu, Y. Wang, C. Song, X. Guo, Microporous Mesoporous Mater. 2014, 196, 18–30.
- 15J. Čejka, B. Wichterlová, Catal. Rev. 2002, 44, 375–421.
- 16W. Kaeding, C. Chu, L. Young, B. Weinstein, S. Butter, J. Catal. 1981, 67, 159–174.
- 17J. H. Ahn, R. Kolvenbach, S. S. Al-Khattaf, A. Jentys, J. A. Lercher, Chem. Commun. 2013, 49, 10584–10586.
- 18J. L. Sotelo, M. A. Uguina, J. L. Valverde, D. P. Serrano, Ind. Eng. Chem. Res. 1996, 35, 1300–1306.
- 19S. Zheng, A. Jentys, J. A. Lercher, J. Catal. 2003, 219, 310–319.
- 20L. Zhang, J. Gao, J. Hu, W. Li, J. Wang, Catal. Lett. 2009, 130, 355–361.
- 21B. Mitra, D. Kunzru, Catal. Lett. 2011, 141, 1569–1579.
- 22S. Namba, A. Inaka, T. Yashima, Zeolites 1986, 6, 107–110.
- 23Y.-H. Yue, Y. Tang, Y. Liu, Z. Gao, Ind. Eng. Chem. Res. 1996, 35, 430–433.
- 24D. Van Vu, M. Miyamoto, N. Nishiyama, Y. Egashira, K. Ueyama, J. Catal. 2006, 243, 389–394.
- 25D. Van Vu, M. Miyamoto, N. Nishiyama, Y. Egashira, K. Ueyama, Catal. Lett. 2009, 127, 233–238.
- 26D. Chen, J. Wang, X. Ren, H. Teng, H. Gu, Catal. Lett. 2010, 136, 65–70.
- 27B. Xue, J. Xu, C. Xu, R. Wu, Y. Li, K. Zhang, Catal. Commun. 2010, 12, 95–99.
- 28Y.-J. Ji, B. Zhang, L. Xu, H. Wu, H. Peng, L. Chen, Y. Liu, P. Wu, J. Catal. 2011, 283, 168–177.
- 29F. Bauer, W. Chen, E. Bilz, A. Freyer, V. Sauerland, S. Liu, J. Catal. 2007, 251, 258–270.
- 30S. Rabiu, S. Al-Khattaf, Ind. Eng. Chem. Res. 2008, 47, 39–47.
- 31A. K. Aboul-Gheit, S. M. Abdel-Hamid, E. A. Emam, Appl. Catal. A 1999, 179, 107–115.
- 32A. K. Aboul-Gheit, S. M. Abdel-Hamid, D. S. El-Desouki, Appl. Catal. A 2001, 209, 179–191.
- 33P. Lu, Z. Fei, L. Li, X. Feng, W. Ji, W. Ding, Y. Chen, W. Yang, Z. Xie, Appl. Catal. A 2013, 453, 302–309.
- 34N. Chakinala, A. G. Chakinala, Ind. Eng. Chem. Res. 2021, 60, 5331–5351.
- 35V. Kazansky, Stud. Surf. Sci. Catal. 1994, 85, 251–272.
- 36Y. Jiang, M. Hunger, W. Wang, J. Am. Chem. Soc. 2006, 128, 11679–11692.
- 37T. Forester, R. F. Howe, J. Am. Chem. Soc. 1987, 109, 5076–5082.
- 38J. Rakoczy, T. Romotowski, Zeolites 1993, 13, 256–260.
- 39M. Frash, V. Kazansky, A. Rigby, R. Van Santen, J. Phys. Chem. B 1998, 102, 2232–2238.
- 40A. Rigby, G. Kramer, R. Van Santen, J. Catal. 1997, 170, 1–10.
- 41J. F. Haw, B. R. Richardson, I. S. Oshiro, N. D. Lazo, J. A. Speed, J. Am. Chem. Soc. 1989, 111, 2052–2058.
- 42V. Kazanskii, ACC. Chem. Res. 1991, 24, 379–383.
- 43S. R. Blaszkowski, R. A. van Santen, J. Am. Chem. Soc. 1996, 118, 5152–5153.
- 44C. D. Chang, Catal. Rev. Sci. Eng. 1983, 25, 1–118.
- 45I. I. Ivanova, A. Corma, J. Phys. Chem. B 1997, 101, 547–551.
- 46S. Svelle, S. Kolboe, O. Swang, U. Olsbye, J. Phys. Chem. B 2005, 109, 12874–12878.
- 47T. Maihom, B. Boekfa, J. Sirijaraensre, T. Nanok, M. Probst, J. Limtrakul, J. Phys. Chem. C 2009, 113, 6654–6662.
- 48C. Wang, L. Zhang, X. Huang, Y. Zhu, G. K. Li, Q. Gu, J. Chen, L. Ma, X. Li, Q. He, Nat. Commun. 2019, 10, 1–8.
- 49R. Van Santen, G. Kramer, Chem. Rev. 1995, 95, 637–660.
- 50A. M. Vos, X. Rozanska, R. A. Schoonheydt, R. A. van Santen, F. Hutschka, J. Hafner, J. Am. Chem. Soc. 2001, 123, 2799–2809.
- 51L.-L. LI, J. M. Janik, X.-W. NIE, C.-S. SONG, X.-W. GUO, Acta Phys. Chim. Sin. 2013, 29, 1467–1478.
- 52S. Svelle, B. Arstad, S. Kolboe, O. Swang, J. Phys. Chem. B 2003, 107, 9281–9289.
- 53J. Li, P. Miao, Z. Li, T. He, D. Han, J. Wu, Z. Wang, J. Wu, Energy Convers. Manage. 2015, 93, 259–266.
- 54J. Li, M. Liu, X. Guo, C. Dai, C. Song, J. Energy Chem. 2018, 27, 1225–1230.
- 55J. Ding, S. Fan, P. Chen, T. Deng, Y. Liu, Y. Lu, Catal. Sci. Technol. 2017, 7, 2087–2100.
- 56R. Anuwattana, K. J. Balkus Jr., S. Asavapisit, P. Khummongkol, Microporous Mesoporous Mater. 2008, 111, 260–266.
- 57Y. Cheng, R. Liao, J. Li, X. Sun, L. Wang, J. Mater. Process. Technol. 2008, 206, 445–452.
- 58S. M. Alipour, R. Halladj, S. Askari, Rev. Chem. Eng. 2014, 30, 289–322.
- 59J. Zhou, Y. Wang, W. Zou, C. Wang, L. Li, Z. Liu, A. Zheng, D. Kong, W. Yang, Z. Xie, Ind. Eng. Chem. Res. 2017, 56, 9310–9321.
- 60V. Shankar, R. Jambulingam, Sustain. Environ. Res. 2017, 27, 273–278.
- 61J. L. Sotelo, M. A. Uguina, J. L. Valverde, D. P. Serrano, Ind. Eng. Chem. Res. 1993, 32, 2548–2554.
- 62D. B. Akolekar, V. R. Choudhary, J. Catal. 1987, 105, 416–431.
- 63W. W. Kaeding, J. Catal. 1989, 120, 409–412.
- 64W. W. Kaeding, J. Catal. 1985, 95, 512–519.
- 65W. W. Kaeding, S. A. Butter, J. Catal. 1980, 61, 155–164.
- 66A. B. Halgeri, Bull Catal. Soc. India 2003, 2, 184.
- 67J. P. Breen, R. Burch, M. Kulkarni, D. McLaughlin, P. Collier, S. Golunski, Appl. Catal. A 2007, 316, 53–60.
- 68J. H. Ahn, R. Kolvenbach, C. Neudeck, S. S. Al-Khattaf, A. Jentys, J. A. Lercher, J. Catal. 2014, 311, 271–280.
- 69J. H. Ahn, R. Kolvenbach, O. Y. Gutiérrez, S. S. Al-Khattaf, A. Jentys, J. A. Lercher, Microporous Mesoporous Mater. 2015, 210, 52–59.
- 70F. C. Meunier, D. Verboekend, J.-P. Gilson, J. C. Groen, J. Pérez-Ramírez, Microporous Mesoporous Mater. 2012, 148, 115–121.
- 71S. Zheng, A. Jentys, J. A. Lercher, J. Catal. 2006, 241, 304–311.
- 72J. H. Ahn, R. Kolvenbach, S. S. Al-Khattaf, A. Jentys, J. A. Lercher, ACS Catal. 2013, 3, 817–825.
- 73Y. Xie, B. Zhao, X. Long, Y. Tang, Dispersion of Oxides on HZSM-5 and Threshold Effect on Shape-Selective Methylation of Toluene, ACS Publications, Washington 2000.
- 74H. Han, A. Zhang, L. Ren, X. Nie, M. Liu, Y. Liu, C. Shi, H. Yang, C. Song, X. Guo, Chem. Eng. Sci. 2022, 252, 117529.
- 75G. Hou, T. Fu, X. Li, Q. Ma, Z. Li, Appl. Catal. A 2022, 642, 118713.
- 76S. Cavallaro, L. Pino, P. Tsiakaras, N. Giordano, B. Rao, Zeolites 1987, 7, 408–411.
- 77B. Yan, J. Wu, X. Li, N. Liu, Q. Ma, B. Xue, Catal. Lett. 2024, 154, 2752–2760.
- 78T. Fu, L. Jia, G. Hou, Z. Li, Microporous Mesoporous Mater. 2023, 354, 112551.
- 79F. Jiao, P. Yu, Y. Cui, H. Li, Q. Hu, Y. Xu, S. Mintova, H. Guo, H. Du, Angew. Chem. 2023, 135, e202310419.
- 80M. Abdi-Khanghah, T. Hamoule, C. D'Agostino, V. Spallina, K. C. Wu, J. Taiwan Inst. Chem. Eng. 2023, 145, 104753.
- 81S. Jung, Y. Ahn, Comput. Chem. Eng. 2025, 194, 108951.
- 82S. Ezenwa, H. Montalvo-Castro, A. J. Hoffman, H. Locht, J. Attebery, D.-Y. Jan, M. Schmithorst, B. Chmelka, D. Hibbitts, R. Gounder, J. Am. Chem. Soc. 2024, 146, 10666–10678.
- 83Y. Yang, Z. Wen, Z. Zu, D. Wang, H. Zhou, D. Zhang, ACS Omega 2023, 8, 24042–24052.
- 84X. Shang, H. Zhuo, Q. Han, X. Yang, G. Hou, G. Liu, X. Su, Y. Huang, T. Zhang, Angew. Chem. 2023, 135, e202309377.
- 85R. Liu, J. Zhang, G. Zhang, W. Zhang, J. Wang, Chem. Eng. Process.: Process Intensif. 2024, 201, 109834.
- 86B. Hong, X. Wang, Y. Lai, S. Huang, J. Liu, Q. Jiang, W. Zhou, Z. Yang, L. Ye, J. Zuo, G. Fu, Y. Yuan, Appl Catal B-Environ Energy 2025, 361, 124606.
- 87J.-H. Kim, A. Ishida, M. Okajima, M. Niwa, J. Catal. 1996, 161, 387–392.
- 88J. Cejka, N. ſilková, B. Wichterlová, G. Eder-Mirth, J. A. Lercher, Zeolites 1996, 17, 265–271.
- 89S. Zheng, H. R. Heydenrych, A. Jentys, J. A. Lercher, J. Phys. Chem. B 2002, 106, 9552–9558.
- 90M. Ghiaci, A. Abbaspur, M. Arshadi, B. Aghabarari, Appl. Catal. A 2007, 316, 32–46.
- 91J. Lercher, G. Rumplmayr, Appl. Catal. 1986, 25, 215–222.
- 92J. C. Védrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, E. G. Derouane, J. B. Nagy, J.-P. Gilson, J. H. C. van Hooff, J. P. van den Berg, J. Wolthuizen, J. Catal. 1979, 59, 248–262.
- 93T. Yashima, Y. Sakaguchi, S. Namba, in Selective Formation of p-Xylene by Alkylation of Toluene With Methanol on ZSM-5 Type Zeolites, Studies in Surface Science and Catalysis, Elsevier, Amsterdam 1981, 739–751.
- 94J. L. Sotelo, M. A. Uguina, J. L. Valverde, D. P. Serrano, Appl. Catal. A 1994, 114, 273–285.
- 95J. W. Ward, J. Catal. 1969, 13, 321–327.
- 96W. Zhang, X. Bao, X. Guo, X. Wang, Catal. Lett. 1999, 60, 89–94.
- 97W. Zhang, X. Han, X. Liu, X. Bao, J. Mol. Catal. A Chem. 2003, 194, 107–113.
- 98Y.-G. Li, H. Jun, Appl. Catal. A 1996, 142, 123–137.
- 99S. Zheng, H. Heydenrych, H. Röger, A. Jentys, J. Lercher, Top. Catal. 2003, 22, 101–106.
- 100A. Corma, V. Fornés, L. Forni, F. Márquez, J. Martınez-Triguero, D. Moscotti, J. Catal. 1998, 179, 451–458.
- 101A. Ungureanu, T. V. Hoang, D. Trong On, E. Dumitriu, S. Kaliaguine, Appl. Catal. A 2005, 294, 92–105.
- 102Z. Xiao, H. Huang, C. Cao, J. Xu, Z. Yang, Fuel 2022, 319, 123848.
- 103N. Li, M. Han, Z. Xue, P. Liu, L. Ling, P. Liu, R. Zhang, B. Wang, Microporous Mesoporous Mater. 2022, 337, 111910.
- 104Q. Ouyang, S. F. Yin, L. Chen, X. P. Zhou, C. T. Au, AlChE J. 2013, 59, 532–540.
- 105P. Dong, Y. Zhang, Z. Li, H. Yong, G. Li, D. Ji, Catal. Commun. 2019, 123, 6–10.
- 106B. Li, H. Chen, S. Li, N. Li, X. Bao, B. Lin, Chin. J. Catal. 2005, 26, 769–774.
- 107K. Gao, S. Li, L. Wang, W. Wang, RSC Adv. 2015, 5, 45098–45105.
- 108H. Liu, H. Wei, W. Xin, C. Song, S. Xie, Z. Liu, S. Liu, L. Xu, J. Energy Chem. 2014, 23, 617–624.
- 109R. Barthos, T. Bánsági, T. S. Zakar, F. Solymosi, J. Catal. 2007, 247, 368–378.
- 110N. Giordano, L. Pino, S. Cavallaro, P. Vitarelli, B. Rao, Zeolites 1987, 7, 131–134.
- 111A. K. Aboul-Gheit, S. M. Aboul-Fotouh, E. A. Emam, S. M. Ahmed, J. Chin. Chem. Soc. 2004, 51, 817–826.
- 112A. K. Aboul-Gheit, A. A. Aboul-Enein, A. E. Awadallah, S. A. Ghoneim, E. A. Emam, Chin. J. Catal. 2010, 31, 1209–1216.
- 113J. Anderson, K. Foger, T. Mole, R. Rajadhyaksha, J. Sanders, J. Catal. 1979, 58, 114–130.
- 114Y.-Y. Zhang, Y.-F. Li, L. Chen, C.-T. Au, S.-F. Yin, Catal. Commun. 2014, 54, 6–10.
- 115Z. Wen, D. Yang, F. Yang, Z. Wei, X. Zhu, Chin. J. Catal. 2016, 37, 1882–1890.
- 116S. Scholz, J. A. Lercher, Chem. Mater. 2011, 23, 2091–2099.
- 117Y.-C. Xie, Y.-Q. Tang, in Advances in Catalysis, Elsevier, Amsterdam 1990, 1–43.
10.1016/S0360-0564(08)60362-4 Google Scholar
- 118S. Zheng, H. Tanaka, A. Jentys, J. A. Lercher, J. Phys. Chem. B 2004, 108, 1337–1343.
- 119H. Hu, Q. Zhang, J. Cen, X. Li, Catal. Commun. 2014, 57, 129–133.
- 120M. Bjørgen, F. Joensen, M. S. Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 2008, 345, 43–50.
- 121H. Hu, J. Lyu, J. Rui, J. Cen, Q. Zhang, Q. Wang, W. Han, X. Li, Catal. Sci. Technol. 2016, 6, 2647–2652.
- 122W. Deng, H. Xuan, C. Zhang, Y. Gao, X. Zhu, K. Zhu, Q. Huo, Z. Zhou, Chin. J. Chem. Eng. 2014, 22, 921–929.
- 123D. Yi, X. Meng, X. Xu, N. Liu, L. Shi, Ind. Eng. Chem. Res. 2019, 58, 10154–10163.
- 124D. Ghosal, J. K. Basu, S. Sengupta, Bull Chem React Eng Catal 2015, 10, 201.
- 125J. Breen, R. Burch, M. Kulkarni, P. Collier, S. Golunski, J. Am. Chem. Soc. 2005, 127, 5020–5021.
- 126H. G. Karge, in Handbook of Heterogeneous Catalysis (Eds: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2008, 484–510.
10.1002/9783527610044.hetcat0023 Google Scholar
- 127W. Kaeding, C. Chu, L. Young, S. Butter, J. Catal. 1981, 69, 392–398.
- 128H. Röger, M. Krämer, K. Möller, C. O'connor, Microporous Mesoporous Mater. 1998, 21, 607–614.
- 129Ø. Mikkelsen, P. O. Rønning, S. Kolboe, Microporous Mesoporous Mater. 2000, 40, 95–113.
- 130Y. Bhat, J. Das, K. Rao, A. Halgeri, J. Catal. 1996, 159, 368–374.
- 131Y. Liu, X. Zhou, X. Pang, Y. Jin, X. Meng, X. Zheng, X. Gao, F. S. Xiao, ChemCatChem 2013, 5, 1517–1523.
- 132Y. Wang, M. Liu, A. Zhang, Y. Zuo, F. Ding, Y. Chang, C. Song, X. Guo, Ind. Eng. Chem. Res. 2017, 56, 4709–4717.
- 133J. C. Goncalves, A. E. Rodrigues, Chem. Eng. Process. 2016, 104, 75–83.
- 134L. Young, S. Butter, W. Kaeding, J. Catal. 1982, 76, 418–432.
- 135G. Mirth, J. A. Lercher, J. Catal. 1994, 147, 199–206.
- 136A. Feliczak-Guzik, Microporous Mesoporous Mater. 2018, 259, 33–45.
- 137D. Kerstens, B. Smeyers, J. Van Waeyenberg, Q. Zhang, J. Yu, B. F. Sels, Adv. Mater. 2020, 32, 2004690.
- 138W. Schwieger, A. G. Machoke, B. Reiprich, T. Weissenberger, T. Selvam, M. Hartmann, in Zeolites in Catalysis: Properties and Applications (Eds: J. Čejka, R. E. Morris, P. Nachtigall), The Royal Society of Chemistry 2017, Ch. 4, 103–145.
10.1039/9781788010610-00103 Google Scholar
- 139K. Möller, T. Bein, Chem. Soc. Rev. 2013, 42, 3689–3707.
- 140X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, B.-L. Su, Chem. Soc. Rev. 2017, 46, 481–558.
- 141X. Jia, W. Khan, Z. Wu, J. Choi, A. C. Yip, Adv. Powder Technol. 2019, 30, 467–484.
- 142R. Chal, C. GØrardin, M. Bulut, S. Van Donk, ChemCatChem 2011, 3, 67–81.
- 143K. Zhang, M. L. Ostraat, Catal. Today 2016, 264, 3–15.
- 144A. Petushkov, S. Yoon, S. C. Larsen, Microporous Mesoporous Mater. 2011, 137, 92–100.
- 145S. Van Donk, A. H. Janssen, J. H. Bitter, K. P. De Jong, Catal. Rev 2003, 45, 297–319.
- 146J. C. Groen, J. A. Moulijn, J. Pérez-Ramírez, J. Mater. Chem. 2006, 16, 2121–2131.
- 147S. Abelló, J. Pérez-Ramírez, Phys. Chem. Chem. Phys. 2009, 11, 2959–2963.
- 148W. J. Roth, J. Čejka, Catal. Sci. Technol. 2011, 1, 43–53.
- 149C. Pavel, R. Palkovits, F. Schüth, W. Schmidt, J. Catal. 2008, 254, 84–90.
- 150D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 2011, 1, 879.
- 151S. van Donk, J. H. Bitter, A. Verberckmoes, M. Versluijs-Helder, A. Broersma, K. P. de Jong, Angew. Chem. 2005, 117, 1384–1387.
10.1002/ange.200460966 Google Scholar
- 152L. H. Ong, M. Dömök, R. Olindo, A. C. van Veen, J. A. Lercher, Microporous Mesoporous Mater. 2012, 164, 9–20.
- 153E. Koohsaryan, M. Anbia, Chin. J. Catal. 2016, 37, 447–467.
- 154J. C. Groen, T. Bach, U. Ziese, A. M. Paulaime-van Donk, K. P. de Jong, J. A. Moulijn, J. Pérez-Ramírez, J. Am. Chem. Soc. 2005, 127, 10792–10793.
- 155J. C. Groen, J. C. Jansen, J. A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B 2004, 108, 13062–13065.
- 156V. Babic, Ιncreasing the Pοrοsity οf Zeοlites, Normandie Université 2021.