Solvent-Aided Crystallization for Biodiesel Purification: A Review of the Technique's Proficiency
Usman Bello
Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, Bauchi, 740102 Nigeria
HICoE—Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Search for more papers by this authorHaruna Adamu
Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, Bauchi, 740102 Nigeria
Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yelwa Campus, Bauchi, 0248 Nigeria
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Shafirah Samsuri
HICoE—Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
E-mail: [email protected]
Search for more papers by this authorMohammad Qamar
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261 Saudi Arabia
Department of Materials Science and Engineering (MSE), King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorWan Nur Aisyah Wan Osman
HICoE—Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Search for more papers by this authorUsman Bello
Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, Bauchi, 740102 Nigeria
HICoE—Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Search for more papers by this authorHaruna Adamu
Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, Bauchi, 740102 Nigeria
Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yelwa Campus, Bauchi, 0248 Nigeria
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Shafirah Samsuri
HICoE—Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
E-mail: [email protected]
Search for more papers by this authorMohammad Qamar
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261 Saudi Arabia
Department of Materials Science and Engineering (MSE), King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorWan Nur Aisyah Wan Osman
HICoE—Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610 Malaysia
Search for more papers by this authorAbstract
Traces of impurities encountered after purification processes compromise biodiesel's stability, longevity, and quality performance. Techniques, such as wet washing, adsorbents, and membranes, have been extensively explored; however, they grapple with several challenges, including wastewater generation, time-demanding tasks, and environmentally unfriendly protocols. This study presents a comprehensive overview of solvent-aided crystallization (SAC) as a plausible biodiesel purification option that offers economic and environmental benefits through efficient solvent recovery and minimal waste generation. A total of 23,009 documents published between 2004 and 2024 in the Scopus database were analyzed using a bibliometric approach. This gives insight into research trends, identifies the most extensively explored techniques, highlights countries with a well-established research base in this domain, and offers a guide for evaluation and preference selection for a particular technique. Although conventional methods have been acknowledged for showing great promise in removing impurities such as glycerol and free fatty acids from biodiesel achieving about 98 %, SAC was reported to achieve 99.8 % purity. Moreover, the analysis presented herein underscores the fundamental principles of SAC, factors influencing its efficiency, and the role of selective solubility in enabling effective purification. Finally, it highlights the critical role of strengthened policy action and continued research as key elements, offering researchers valuable insights for advancing the broader adoption and commercialization of SAC.
Conflicts of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
cben70018-sup-0001-SuppMat.docx24.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Fatima, U. Ikram, S. I. Raja, A. S. Mir, S. Q. Sumbal, A. Amna, I. S. Fatima, J. Cleaner Prod. 2022, 370, 133–149. DOI: https://doi.org/10.1016/j.jclepro.2022.133479
10.1016/j.jclepro.2022.133479 Google Scholar
- 2W. Nabgan, A. A. Jalil, B. Nabgan, A H. Jadhav, M. Ikram, A. Ul-Hamid, M. W. Ali, N. S. Hassan, RSC Adv. 2022, 12, 1604–1627. DOI: https://doi.org/10.1039/d1ra07338a
- 3A. W. Osman, M. H. Rosli, W. N. A. Mazli, S. Samsuri, Carbon Capture Sci. Technol. 2024, 13, 100264. DOI: https://doi.org/10.1016/j.ccst.2024.100264
- 4P. Vasiliki, E. Emmanouilidou, A. Lazaridou, N. C. Kokkinos, S. Mitkidou, ChemistrySelect 2025, 10, e202404497. DOI: https://doi.org/10.1002/slct.202404497
10.1002/slct.202404497 Google Scholar
- 5N. C. Kokkinos, E. Emmanouilidou, S. K. Sharma, Intelligent Transportation System and Advanced Technology, Springer, Singapore 2024, 99–122. DOI: https://doi.org/10.1007/978-981-97-0515-3_6
10.1007/978-981-97-0515-3_6 Google Scholar
- 6R. A. Quevedo-Amador, B. P. Escalera-Velasco, A. M. R. Arias, Clean Techn. Environ. Policy 2024, 26, 943–997, DOI: https://doi.org/10.1007/s10098-023-02728-4
- 7 A Comprehensive Analysis of Biodiesel Impacts On Exhaust Emissions, Draft Technical Report (the United States Environmental Protection Agency, Assessment and Standards Division, Office of Transportation and Air Quality, USA), 2002, 6, 118, DOI: https://purl.fdlp.gov/GPO/gpo107232
- 8I. Ambat, V. Srivastava, M. Sillanpää, Renew. Sustain. Energy Rev. 2018, 90, 356–369. DOI: https://doi.org/10.1016/j.rser.2018.03.069
- 9N. Binhayeeding, S. Klomklao, K. Sangkharak, Energy Procedia 2017, 138, 895–900. DOI: https://doi.org/10.1016/j.egypro.2017.10.130
- 10A. Mohammed, C. Bandari, Biofuels 2017, 11, 409–419, https://doi.org/10.1080/17597269.2017.13708.82
10.1080/17597269.2017.1370882 Google Scholar
- 11K. Gaurav, K. Neeti, R. Singh, Green Technol. Sustainability 2024, 2, 100060. DOI: https://doi.org/10.1016/j.grets.2023.100060
10.1016/j.grets.2023.100060 Google Scholar
- 12B. Hamed, S. Alireza, A. A. Chad, Biofuel Res. J. 2017, 15, 668–690. DOI: https://doi.org/10.18331/BRJ2017.4.3.5
10.18331/BRJ2017.4.3.5 Google Scholar
- 13M. R. Abdulwasiu, M. Brady, C. Khaled, E. A. Serge, Renew. Sustain. Energy Rev. 2025, 207, 114970. DOI: https://doi.org/10.1016/j.rser.2024.114970
10.1016/j.rser.2024.114970 Google Scholar
- 14I. M. Atadashi, Alexandria Eng. J 2015, 54, 1265–1272. DOI: https://doi.org/10.1016/j.aej.2015.08.005
10.1016/j.aej.2015.08.005 Google Scholar
- 15A. Taha, D. Martin, S. Vincenzo, Fuel 2023, 340, 127485. DOI: https://doi.org/10.1016/j.fuel.2023.127485
10.1016/j.fuel.2023.127485 Google Scholar
- 16C. Tianfeng, L. Huipeng, Z. Hua, L. Kejian, China Pet. Process. Petrochem. Technol. 2013, 15, 48–53.
- 17M. A. Afnan, L. Arun, S. Shafirah, A. M. W. Nur, M. S. Juniza, Bioresour. Bioprocess. 2021, 8, 54. DOI: https://doi.org/10.1186/s40643-021-00409-y
- 18P. Anand, R. K. Saxena, Biotechnology 2012, 29, 199–205. DOI: https://doi.org/10.1016/j.nbt.2011.05.010
- 19S. Shafirah, A. A. Nurul, J. Z. Loh, M. M. Muhammad, Malaysian J. Fundam. Appl. Sci. 2017, 13, 676–679.
10.11113/mjfas.v13n4.925 Google Scholar
- 20S. Shafirah, L. J. Ngiam, F. W. Jusoh, E. H. Yáñez, N. Y. Yahida, Chem. Eng. Technol. 2020, 43, 447–456. DOI: https://doi.org/10.1002/ceat.201900433
10.1002/ceat.201900433 Google Scholar
- 21B. Usman, A. Haruna, S. Shafirah, Q. Mohammad, Int. J. Hydrogen Energy 2025, 117, 353–373. DOI: https://doi.org/10.1016/j.ijhydene.2025.03.095
10.1016/j.ijhydene.2025.03.095 Google Scholar
- 22N. J. Van Eck, L. Waltman, Scientometrics 2017, 111, 1053–1070. DOI: https://doi.org/10.1007/s11192-017-2300-7
- 23V. Durieux, P. A. Gevenois, Radiology 2010, 255 (2), 342–351.
- 24B. Usman, A. Haruna, S. Shafirah, I. Hamza, Q. Mohammad, Results Eng. 2025, 26, 105185. DOI: https://doi.org/10.1016/j.rineng.2025.105185
- 25M. Zhang, H. Wu, Fuel 2015, 159, 118–127. DOI: https://doi.org/10.1016/j.fuel.2015.06.062
- 26M. A. Ahmad, S. Samsuri, Crystals 2021, 11, 212. DOI: https://doi.org/10.3390/cryst11020212
- 27S. Samsuri, M. M. Mohd Bakri, Sep. Sci. Technol. 2018, 53, 567–572. DOI: https://doi.org/10.1080/01496395.2017.1392975.
- 28S. K. Farahani, F. S. Halek, S. M. Hosseini, Korean J. Chem. Eng. 2015, 32, 2097–2102. DOI: https://doi.org/10.1007/s11814-015-0049-3
- 29M. Ila, K. Miikki, M. Louhi-Kultanen, Cryst. Growth Des. 2024, 24, 1952–1958. DOI: https://doi.org/10.1021/acs.cgd.3c01207
- 30M. Ila, M. Louhi-Kultanen, Chem. Eng. Sci. 2023, 272, 118601. DOI: https://doi.org/10.1016/j.ces.2023.118601
- 31A. A. Kiss, R. M. Ignat, Appl. Energy 2012, 99, 146–153. DOI: https://doi.org/10.1002/jctb.4108
- 32H. Nawaz, M. A. Shad, N. Rehman, H. Andaleeb, N. Ullah, Braz. J. Pharm. Sci. 2020, 56, 1–9. DOI: https://doi.org/10.1590/s2175-97902019000417129
- 33T. Koffi, S. S. Dodehe, J. Anim. Plant Sci. 2010, 3, 550–558.
- 34B. Sangita, K. V. Pradeep, J. Sci. Ind. Res. 2010, 69, 575–579.
- 35G. E. Ramirez Caballero, C. Ardila Suárez, J. Z. Rojas Cristancho, J. P. Pineda Martínez, A. Ramírez García, Tecnología Y Futuro 2019, 9, 89–98.
- 36H. W. Tan, A. R. Abdul Aziz, M. K. Aroua, Renew. Sustain. Energy Rev. 2013, 27, 118–127.
- 37M. G. Tea Sokač, J. T. Ana, S. Anita, Z. Bruno, Renew. Energy 2020, 159, 642–651. DOI: https://doi.org/10.1016/j.renene.2020.05.132
10.1016/j.renene.2020.05.132 Google Scholar
- 38S. Oluwasegun, S. M. Chika, E. U. Akubueze, C. Igwa, J. Energy Res. Rev. 2019, 2, 1–6. DOI: https://doi.org/10.9734/JENRR/2019/v2i129728
10.9734/JENRR/2019/v2i129728 Google Scholar
- 39V. A. Beserra, A. S. Cesar, A. A. C. Peres, Archivos de Zootecnia 2016, 65, 259–265,.
- 40B. M. Couillaud, P. Espeau, N. Mignet, Y. Corvis, ChemMedChem 2019, 14, 8–23. DOI: https://doi.org/10.1002/cmdc.201800612
- 41D. Martynek, J. Němeček, L. Ridvan, J. Němeček, M. Šoóš, Powder Technol. 2022, 405, 117522. DOI: https://doi.org/10.1016/j.powtec.2022.117522
- 42Q. H. Sophia, J. McNutt, J. Yang, Renew. Sustain. Energy Rev. 2017, 71, 63–76. DOI: https://doi.org/10.1016/j.rser.2016.12.110
10.1016/j.rser.2016.12.110 Google Scholar
- 43T. Mizik, G. Gyarmati, Clean Technol. 2021, 3, 19–36. DOI: https://doi.org/10.3390/cleantechnol3010002
- 44U. I. Nda-Umar, I. Ramli, Y. H. Taufiq-Yap, E. N. Muhamad, Catalysts 2019, 9, 15. DOI: https://doi.org/10.3390/catal9010015
- 45C. Mónica, F. Eduardo, P. S. Ana, G. João, Chem. Eng. J. 2020, 386, 123–930. DOI: https://doi.org/10.1016/j.cej.2019.123930
10.1016/j.cej.2019.123930 Google Scholar
- 46J. L. Carmona, A. Valverde, J. P´erez, J. F. Warchol, J. Chem. Technol. Biotechnol. 2009, 84 (5) 738–744.
- 47F. J. Eisenbart, J. Ulrich, Chem. Eng. Sci. 2015, 133, 24–29. DOI: https://doi.org/10.1016/j.ces.2014.12.060
- 48H. Zhang, Y. Lai, X. Yang, C. Li, Y. Dong, Energy 2022, 244, 123–062. DOI: https://doi.org/10.1016/j.energy.2021.123062
- 49H. A. Esmaeili, Fuel Process. Technol. 2022, 230, 107224. DOI: https://doi.org/10.1016/j.fuproc.2022.107224
- 50M. C. Manique, C. S. Faccini, B. Onorevoli, E. V. Benvenutti, E. B. Caramão, Fuel 2012, 92, 56–61. DOI: https://doi.org/10.1016/j.fuel.2011.07.024
- 51M. Pranjal, B. H. Mohd, Y. Mohammad, J. K. Jaromír, B. Awais, B. Mukarram, A. Amani, K. Rakesh, K. J. Amit, J. Cleaner Prod. 2022, 355, 131588. DOI: https://doi.org/10.1016/j.jclepro.2022.131588
10.1016/j.jclepro.2022.131588 Google Scholar
- 52S. Sparsh, Ch. Siva Ramakrishna, R. Sahu, R. Shyam Narain, J. Kaur Sohal, M. Sahu, N. Sharma, V. Kumar, A. Sharma, Mater. Today Proc. 2022, 63, A22–A26. DOI: https://doi.org/10.1016/j.matpr.2022.07.273
- 53V. B. Veljković, I. B. Banković-Ilić, O. S. Stamenković, Renew. Sustain. Energy Rev. 2015, 49, 500–516. DOI: https://doi.org/10.1016/j.rser.2015.04.097
- 54P. R. Yaashikaa, P. S. Kumar, S. Karishma, Fuel 2022, 316, 123379. DOI: https://doi.org/10.1016/j.fuel.2022.123379
- 55R. Govindaraju, S. S. Chen, L. P. Wang, H. M. Chang, M. Pasawan, Review. Curr. Pollut. Rep. 2021, 7, 128–45. DOI: https://doi.org/10.1007/s40726-021-00182-8
- 56A. Demirbas, Progr. Energy Combust. Sci. 2005, 31, 466–487. DOI: https://doi.org/10.1016/j.pecs.2005.09.001
- 57F. Nadeem, A. Shahzadi, A. El Zerey-Belaskri, Z. Abbas, Int. J. Chem. Biochem. Sci. 2017, 12, 113–121.
- 58V. Innocenzi, M. Prisciandaro, Waste Manage. 2021, 122, 15–25. DOI: https://doi.org/10.1016/j.wasman
- 59R. Manosak, S. Limpattayanate, M. Hunsom, Fuel Process. Technol. 2011, 92, 92–99. DOI: https://doi.org/10.1016/j.fuproc.2010.09.002
- 60A. Emilio, M. Stephanie, R. Yetzin, A. Jonathan, M. Omar, S. Georgina, Processes 2021, 9, 194. DOI: https://doi.org/10.3390/pr9020194
10.3390/pr9020194 Google Scholar
- 61M. Gopi, R. D. Kumar, B. Patel, R. Deginal, J. Exp. Biol. Agric. Sci. 2017, 5, 755–66. DOI: https://doi.org/10.18006/2017.5(6).755.766
10.18006/2017.5(6).755.766 Google Scholar
- 62D. Raabe, Chemical Reviews 2023, 123 (5), 2436–2608. DOI: https://doi.org/10.1021/acs.chemrev.2c00799
- 63E. Curcio, X. Ji, A. M. Quazi, S. Barghi, G. Di Profio, E. Fontananova, T. Macleod, E. Drioli, J. Membr. Sci. 2010, 360, 493–498. DOI: https://doi.org/10.1016/j.memsci.2010.05.053
- 64N. Z. K. Shaari, N. A. Rahman, Eng. Ind. Appl. Colloq. 2013, 565–70. DOI: https://doi.org/10.1109/BEIAC.2013.6560192
10.1109/BEIAC.2013.6560192 Google Scholar
- 65C. Chingakham, O. Manaf, A. Sujith, V. Sajith, Appl. Nanosci. 2019, 10, 795–806. DOI: https://doi.org/10.1007/s13204-019-01140-z
10.1007/s13204-019-01140-z Google Scholar
- 66J. Adekunle Oyedele Oyekunle, S. Eluwale Elugoke, A. Saheed Adekunle, O. Samson Ojo, A. Jide Oyinloye, O. Temitope Fakoya, O. Ruth Obisesan, S. Sunday Durodola, IJBC 2019, 4, 84. DOI: 1011648/j.ijbc.20190402.11
10.11648/j.ijbc.20190402.11 Google Scholar
- 67A. Javani, M. Hasheminejad, K. Tahvildari, M. Tabatabaei, Bioresour. Technol. 2012, 104, 788–790.
- 68M. Hájek, F. Skopal, Bioresour. Technol. 2010, 101, 3242–3245. DOI: https://doi.org/10.1016/j.biortech.2009.12.094
- 69A. L. Squissato, A. F. Lima, E. S. Almeida, D. Pasquini, E. M. Richter, R. A. A. Munoz, Ind. Crops Prod. 2017, 95, 1–5. DOI: https://doi.org/10.3390/molecules30030483
- 70M. A. Ahmad Farid, M. A. Hassan, Y. H. Taufiq-Yap, Y. Shirai, M. Y. Hasan, M. R. Zakaria, J. Cleaner Prod. 2017, 165, 262–272. DOI: https://doi.org/10.1016/j.jclepro.2017.07.136
- 71M. J. Alves, I. V. Cavalcanti, M. M. de Resende, V. L. Cardoso, M. H. Reis, Ind. Crops Prod. 2016, 89, 119–127. DOI: https://doi.org/10.1016/j.indcrop.2016.05.005
- 72L. S. Ott, M. M. Riddell, L. E. O'Neill, G. S. Carini, Fuel Process. Technol. 2018, 176, 1–6. DOI: https://doi.org/10.1016/j.fuproc.2018.02.023
- 73M. G. Gomes, D. Q. Santos, L. C. De Morais, D. Pasquini, Fuel 2015, 155, 1–6. DOI: https://doi.org/10.1016/j.fuel.2015.04.012
- 74M. Sokač, A. J. Gojun, A. Tušek, A. Šalić, B. Zelić, Renew. Energy 2020, 159, 642–651. DOI: https://doi.org/10.1016/j.renene.2020.05.132
- 75M. J. Alves, S. M. Nascimento, I. G. Pereira, M. I. Martins, V. L. Cardoso, M. Reis, Renew. Energy 2013, 58, 15–20. DOI: https://doi.org/10.1016/j.renene.2013.02.035
- 76S. Chongkhong, C. Tongurai, P. Chetpattananondh, Renew. Energy 2009, 34, 1059–1063.
- 77K. Chingakham, A. Juraij, V. Sajith, J. Polym. Res. 2021, 28, 273. DOI: https://doi.org/10.1007/s10965-021-02602-1
- 78W. N. A. Wan Osman, N. A. I. Badrol, S. Samsuri, Molecules 2023, 28, 1512. DOI: https://doi.org/10.3390/molecules28031512
- 79T. Eryilmaz, M. K. Yesilyurt, C. Cesur, O. Gokdogan, Renew. Sustain. Energy Rev. 2016, 58, 842–851. DOI: https://doi.org/10.1016/J.RSER.2015.12.172
- 80N. J. Van Eck, L. Waltman, Scientometrics 2010, 84, 523–538. DOI: https://doi.org/10.1007/s11192-009-0146-3
- 81R. W. M. Pott, C. J. Howe, J. S. Dennis, Bioresour. Technol. 2014, 152, 464–470. DOI: https://doi.org/10.1016/j.biortech.2013.10.094
- 82R. Ciriminna, C. D. Pina, M. Rossi, M. Pagliaro, Spec. Feature Understanding Glycerol Market 2014, 14, 32–9. DOI: https://doi.org/10.1002/ejlt.201400229
10.1002/ejlt.201400229 Google Scholar
- 83 The United States Department of Agriculture. EU-28 Biofuel Mandates in the EU by Member State, USDA FAS “Data and Analysis” → GAIN report, 2015, 16.
- 84R. Jaber, M. M. A. Shirazi, J. Toufaily, A. T. Hamieh, A. Noureddin, H. Ghanavati, A. Ghaffari, A. Zenouzi, A. Karout, A. F. Ismail, M. Tabatabaei, Biofuel Res. J 2015, 2, 148–151.
- 85J. Á. Siles López, M. D. L. Á. Martín Santos, A. F. Chica Pérez, A. Martín Martín, Bioresour. Technol. 2009, 100, 5609–5615. DOI: https://doi.org/10.1016/j.biortech.2009.06.017
- 86M. S. Ardi, M. K. Aroua, N. A. Hashim, Renew. Sustain. Energy Rev. 2015, 42, 1164–1173. DOI: https://doi.org/10.1016/j.rser.2014.10.091
- 87 Global biodiesel market 2019–2023, https://www.reportlinker.com/market-report/Bioenergy/10966/Biodiesel
- 88V. R. Fávaro, J. M. B. Ezequiel, A. P. D'aurea, E. H. C. B. Van Cleef, J. B. D. Sancanari, V. C. Santos, A. C. Homem Junior, Semin. Agrar. 2015, 36, 1495. DOI: https://doi.org/10.5433/1679-0359.2015v36n3p1495
- 89C. F. Hansen, A. Hernandez, B. P. Mullan, K. Moore, M. Trezona-Murray, R. H. King, J. R. Pluske, Anim. Prod. Sci. 2009, 49 (2), 154
- 90 Produktion von Biodiesel weltweit und in Deutschland bis 2018, Statista n.d
- 91M. H´ajek, A. V´avra, M. Skopal, M. Mˇekotov´a, J. Clean 2018, 197, 1573–1578. DOI: https://doi.org/10.1016/j.jclepro.2018.06.287
- 92V. Ameh, O. O. Ayeleru, P. N. Nomngongo, I. M. Ramatsa, Waste Manage. Bull. 2024, 2, 32–48. DOI: https://doi.org/10.1016/j.wmb.2024.03.002
10.1016/j.wmb.2024.03.002 Google Scholar
- 93C. Ardila-Suárez, J. Rojas-Cristancho, J. Pineda-Martínez, G. E. Ramirez-Caballero, A. Ramirez-Garcia, CT&F–Ciencia, Tecnologia y Futuro 2019, 9, 89–97. DOI: https://doi.org/10.29047/01225383.122
- 94F. Ebrahim, G. Barat, M. S. Seyed, N. Gholamhassan, M. M. Seyyed, H. S. J. Bahram, Sustain. Energy Technol. Assessments 2021, 47, 101511. DOI: https://doi.org/10.1016/j.seta.2021.101511
10.1016/j.seta.2021.101511 Google Scholar
- 95X. Zhang, B. Sun, H. Shui, H. Lin, S. Han, Ind. Crops Prod. 2022, 188, 115471. DOI: https://doi.org/10.1016/j.indcrop.2022.115471
- 96S. P. Singh, D. Singh, Renew. Sustain. Energy Rev. 2010, 14, 200–216. DOI: https://doi.org/10.1016/j.rser.2009.07.017
- 97E. Skrzyńska, A. Wondołowska-Grabowska, M. Capron, F. Dumeignil, Appl. Catal. Gen. 2014, 482, 245–257.
- 98A. I. Osman, M. Nasr, M. Farghali, A K. Rashwan, A. Abdelkader, A.’ A. H. Al-Muhtaseb, I. Ihara, D. W. Rooney, Environ. Chem. Lett. 2024, 22, 1005–1071. DOI: https://doi.org/10.1007/s10311-024-01700-y
- 99K. Netshifhefhe, H. Jordaan, Water 2022, 14, 1141, DOI: https://doi.org/10.3390/w14071141
- 100S. N. Alam, Z. Khalid, A. Guldhe, B. Singh, Waste and Biodiesel, Elsevier 2022, 1-6. DOI: https://doi.org/10.1016/B978-0-12-823958-2.00005-7
10.1016/B978-0-12-823958-2.00005-7 Google Scholar
- 101A. A. Babadi, S. Rahmati, R. Fakhlaei, B. Barati, S. Wang, W. Doherty, K. Ostrikov, Biomass Bioenergy 2022, 163, 106521. DOI: https://doi.org/10.1016/j.biombioe.2022.106521
- 102S. B. Chavan, M. Yadav, R. Singh, V. Singh, R. R. Kumbhar, Y. C. Sharma, Environ. Prog. Sustain Energy 2017, 36, 788–795. DOI: https://doi.org/10.1002/ep.12606
- 103M. Elkelawy, E. El Shenawy, H. Bastawissi, I. El Shennawy, J. Phys.: Conf. Ser. 2022, 2299, 012023.
- 104A. Amani, S. Rahmati, R. Fakhlaei, B. Barati, S. W. Wang, W. Doherty, Biomass Bioenergy 2022, 163, 106521. DOI: https://doi.org/10.1016/j.biombioe.2022.106521
10.1016/j.biombioe.2022.106521 Google Scholar
- 105M. M. Hasan, M. M. Rahman, Renew. Sustain. Energy Rev. 2017, 74, 938–948. DOI: https://doi.org/10.1016/j.rser.2017.03.045
- 106V. Mandari, S. K. Devarai, Bioenerg. Res. 2022, 15, 935–961. DOI: https://doi.org/10.1007/s12155-021-10333-w
- 107K. Suthar, A. Dwivedi, M. Joshipura, Asia Pac. Chem. Eng. J. 2019, 14, e2361. DOI: https://doi.org/10.1002/apj.2361
- 108M. A. Chinedu, A. Kingsley, O. Prince, J. A. Abiazieije, J. C. Omeje, E. Uchenna, H. Osondu, E. D. Nwankwo, P. Mmesoma, Waste Manage. Bull. 2024, 1, 172–181. DOI: https://doi.org/10.1016/j.wmb.2023.11.002
10.1016/j.wmb.2023.11.002 Google Scholar
- 109Z. Zhu, Y. Liu, W. Cong, X. Zhao, J. Janaun, T. Wei, Z. Fang, Ind. Crops Prod. 2021, 166, 113479. DOI: https://doi.org/10.1016/j.indcrop.2021.113479
- 110B. Usman, A. A. Nurul, R. S. H. Muhammad, J. Saudi Chem. Soc. 2023, 27, 101653. DOI: https://doi.org/10.1016/j.jscs.2023.101653
10.1016/j.jscs.2023.101653 Google Scholar
- 111H. M. Khan, T. Iqbal, S. Yasin, M. Irfan, M. Kazmi, H. Fayaz, M. A. Mujtaba, C. H. Ali, M. A. Kalam, M. E. M. Soudagar, N. Ullah, Alex Eng. J. 2021, 60, 5831–5849. DOI: https://doi.org/10.1016/j.aej.2021.04.043
- 112Y. Xu, G. Li, Z. Y. Sun, Renew. Sustain. Energy Rev. 2016, 54, 318–330. DOI: https://doi.org/10.1016/j.rser.2015.10.035
- 113M. A. Ishak, K. Ismail, W. I. Nawawi, A. H. Jawad, A. Y. Ani, Z. Zakaria, MATEC Web. Conf. 2017, 97, 01082.
10.1051/matecconf/20179701082 Google Scholar
- 114O. A. Olagunju, P. Musonge, IOP Conf. Ser.: Earth Environ. Sci. 2017, 78, 012019.
10.1088/1755-1315/78/1/012019 Google Scholar
- 115M. Cerón Ferrusca, R. Romero, S. L. Martínez, A. Ramírez-Serrano, R. Natividad, Processes 2023, 11 (7), 1952. DOI: https://doi.org/10.3390/pr11071952
- 116C. H. Lin, Y. T. Chang, M. C. Lai, T. Y. Chiou, C. S Liao, Processes 2021, 9, 756. DOI: https://doi.org/10.3390/pr9050756
- 117H. Y. Shin, S. H. Lee, J. H. Ryu, S. Y. Bae, J. Supercrit. Fluids 2012, 61, 134–138. DOI: https://doi.org/10.1016/j.supflu.2011.09.009
- 118 Novozymes, Enzym. Biodiesel Proc. 2024. https://www.novozymes.com/en/solutions/enzymes-biodiesel
- 119 Algenol, Energy. Gov. 2024. https://www.energy.gov/eere/articles/making-algal-biofuel-production-more-efficient-less-expensive
- 120C. Burness, 2024. https://www.sfgate.com/restaurants/article/S-F-program-recycles-restaurants-cooking-oil-3236138.php
- 121 Neste, “Renewable Diesel,” Neste, 2024. https://www.neste.com/products-and-innovation/neste-my-renewable-diesel
- 122 Investment analysis of Archer-Daniels-Midland Co, 2024. https://freedom24.com/ideas/details/13691
- 123A. Muniz Kubota, J. Dal Belo Leite, M. Watanabe, O. Cavalett, M. Leal, L. Cortez, Agriculture 2017, 7, 61. DOI: https://doi.org/10.3390/agriculture7070061
10.3390/agriculture7070061 Google Scholar
- 124E. Eni, Int. Mag. 2024. https://biofuels-news.com/news/eni-opens-second-biorefinery-in-italy-including-pilot-waste-to-fuel-plant/