Purification Strategies for Bacteriocins and Bacteriocin-Like Inhibitory Substances (BLIS)
Zhang Jin Ng
Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Jalan Sungai Dua, Gelugor, Pulau Pinang, 11800 Malaysia
Search for more papers by this authorRozi Nuraika Binti Ramli
Malaysia Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, 11700 Malaysia
Search for more papers by this authorCorresponding Author
Joo Shun Tan
Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Jalan Sungai Dua, Gelugor, Pulau Pinang, 11800 Malaysia
E-mail: [email protected]
Search for more papers by this authorZhang Jin Ng
Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Jalan Sungai Dua, Gelugor, Pulau Pinang, 11800 Malaysia
Search for more papers by this authorRozi Nuraika Binti Ramli
Malaysia Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, 11700 Malaysia
Search for more papers by this authorCorresponding Author
Joo Shun Tan
Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Jalan Sungai Dua, Gelugor, Pulau Pinang, 11800 Malaysia
E-mail: [email protected]
Search for more papers by this authorAbstract
Bacteriocins and bacteriocin-like inhibitory substances (BLIS) are antimicrobial peptides produced by bacteria with diverse applications in food preservation, pharmaceuticals, and biotechnology. Their practical use depends on efficient purification from complex fermentation broths to ensure bioactivity, purity, and safety. A range of purification techniques have been explored, including ammonium sulfate precipitation, aqueous two-phase systems (ATPS), pH-mediated cell adsorption–desorption, chromatography, and polyethylene glycol (PEG)-impregnated resin systems. Each method offers specific advantages and limitations regarding selectivity, recovery yield, process scalability, and compatibility with downstream operations. Innovation such as ionic liquid-based ATPS has demonstrated improved separation efficiency and milder processing conditions, making them attractive for sensitive biomolecules. Understanding the underlying principles of these methods enables the development of tailored purification workflows that enhance product quality and support the commercialization of bacteriocin-based bioactive agents.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- 1E. Meade, M. Slattery, M. Garvey, Antibiotics (Basel) 2020, 9 (1), 32.
- 2A. Darbandi, A. Asadi, M. Mahdizade Ari, E. Ohadi, M. Talebi, M. Halaj Zadeh, A. Darb Emamie, R. Ghanavati, M. Kakanj, J. Clin. Lab. Anal. 2022, 36 (1), e24093.
- 3C. Cesa-Luna, J. Alatorre-Cruz, R. Carreño-López, V. Quintero-Hernández, A. Baez, Pol. J. Microbiol. 2021, 70 (2), 143–159.
- 4V. M. Abramov, I. V. Kosarev, A. V. Machulin, T. V. Priputnevich, E. I. Deryusheva, E. L. Nemashkalova, I. O. Chikileva, T. N. Abashina, A. N. Panin, V. G. Melnikov, N. E. Suzina, I. N. Nikonov, M. V. Selina, V. S. Khlebnikov, V. K. Sakulin, V. A. Samoilenko, A. B. Gordeev, G. T. Sukhikh, V. N. Uversky, A. V. Karlyshev, Antibiotics 2023, 12 (3), 471.
- 5A. Simons, K. Alhanout, R. Duval, Microorganisms 2020, 8 (5), 639.
- 6T. Yuliana, A. R. Pratiwi, S. Zahratunnisa, T. Rialita, Y. Cahyana, P. W. Harlina, H. Marta, Appl. Sci. 2023, 13 (7), 4277.
- 7S. Soltani, R. Hammami, P. D Cotter, S. Rebuffat, L. B. Said, H. Gaudreau, F. Bédard, E. Biron, D. Drider, I. Fliss, FEMS Microbiol. Rev. 2021, 45, fuaa039.
- 8S. Mao, J. Jiang, K. Xiong, Y. Chen, Y. Yao, L. Liu, H. Liu, X. Li, Foods 2024, 13 (23), 3846.
- 9K. Rachwał, K. Gustaw, Sustainability 2024, 16 (8), 3362.
- 10S. Oluwa, J. Microbiol. Biotechnol. 2020, 30 (11), 1739–1749.
- 11H. M. Sørensen, K. D. Rochfort, S. Maye, G. MacLeod, D. Brabazon, C. Loscher, B. Freeland, Nutrients 2022, 14 (14), 2938.
- 12K. Ovchinnikov, T. Oftedal, S. Reich, N. Bar, H. Holo, M. Skaugen, C. Riedel, D. Diep, Bio Protoc 2022, 12 (14), e4477.
- 13J. Flynn, A. Ryan, S. Hudson, Eur. J. Pharm. Biopharm. 2021, 165, 149–163.
- 14J. Kim, E. Lee, B. Kim, J. Ham, M. Oh, Foods 2023, 13 (1), 10.
- 15P. Yap, Z. Lai, J. Tan, Beni-Suef Univ J Basic Appl Sci2022, 11 (1), 51.
- 16R. Jawan, S. Abbasiliasi, J. S. Tan, M. Halim, S. Mustafa, B. H. Lee, J. S. Kwa, A. B. Ariff, Fermentation2021, 7, 257.
- 17J. Kim, E. Lee, B. Kim, J. Ham, M. Oh, Foods 2024, 13 (1), 10.
- 18Z. J. Ng, H. S. Ng, P. E. Kee, C. Gan, A. M. A. Mokhtar, M. A. Zarin, C. K. Lee, J. S. Tan, J. C. Lan, J. Taiwan Inst. Chem. Eng. 2024, 160,.
- 19S. Abbasiliasi, J. S. Tan, T. A. T. Ibrahim, S. Kadkhodaei, H. S. Ng, F. Vakhshiteh, Z. Ajdari, S. Mustafa, T. C. Ling, R. A. Rahim, A. B. Ariff, Food Chem. 2014, 151, 93–100.
- 20R. Lappe, V. Sant'Anna, A. Brandelli, Nat. Prod. Res. 2012, 26 (23), 2259–2265.
- 21C. Li, J. Bai, W. Li, Z. Cai, F. Ouyang, Biotechnol. Prog. 2001, 17 (2), 366–368.
- 22C. Li, F. Ouyang, J. Bai, Biotechnol. Lett 2000. 22 (10), 843–847.
- 23S. D. S. Sabo, A. M. Lopes, V. D. C. Santos-Ebinuma, C. D. O. Rangel-Yagui, R. P. D. S. Oliveira, Process Biochem. 2018, 66, 212–221.
- 24N. Jamaluddin, A. Ariff, F. Wong, Biotechnol. Prog. 2019, 35 (1), e2719.
- 25A. F. Jozala, A. M. Lopes, L. C. de Lencastre Novaes, P. G. Mazzola, T. C. V. Penna, A. P. Júnior, Food Bioprocess Technol. 2013, 6, 3456–3461.
- 26H. Zhang, L. Liu, Y. Hao, S. Zhong, H. Liu, T. Han, Y. Xie, Microbiol. Immunol. 2013, 57 (11), 746–755.
- 27A. Pal, K. Ramana, J. Food Biochem. 2010, 34 (5), 932–948.
- 28R. Yang, M. Johnson, B. Ray, Appl. Environ. Microb. 1992, 58, 3355–3359.
- 29A. Cheikhyoussef, N. Cheikhyoussef, H. Chen, J. Zhao, J. Tang, H. Zhang, W. Chen, Food Control 2010, 21 (5), 746–753.
- 30H. Dündar, Ö. Çelikbiçak, B. Salih, T. F. Bozoğlu, Turk J. Biol. 2014, 38, 611–618.
- 31G. Liu, L. Ren, Z. Song, C. Wang, B. Sun, Food Control 2015, 50, 889–895.
- 32J. Zhang, Y. Yang, H. Yang, Y. Bu, H. Yi, L. Zhang, X. Han, L. Ai, Front. Microbiol. 2018, 9, 2165.
- 33D. Wu, M. Dai, Y. Shi, Q. Zhou, P. Li, Q. Gu, Front. Microbiol. 2022, 13, 1050807.
- 34Q. Li, Q. Chen, Y. Wu, Z. Chen, Y. Liu, Z. Fang, Q. Deng, LWT 2023, 173, 114329.
- 35V. Surovtsev, V. Borzenkov, V. Levchuk, Appl. Biochem. Microbiol. 2015, 51 (9), 881–886.
- 36R. Zhao, Y. Lu, J. Ran, G. Li, S. Lei, Y. Zhu, B. Xu, Food Biosci. 2020, 38, 100754.
- 37D. Guyonnet, C. Fremaux, Y. Cenatiempo, J. M. Berjeaud, Appl. Environ. Microb. 2000, 66 (4), 1744–1748.
- 38Z. Heidari, M. Ghasemi, L. Modiri, Arch. Microbiol. 2021, 204 (1), 101.
- 39A. F. Jozala, M. S. de Andrade, L. J. de Arauz, A. Pessoa, T. C. V. Penna, Appl. Biochem. Biotechnol. 2007, 137–140, 515–528.
- 40A. Golneshin, M. Gor, N. Williamson, B. Vezina, T. T. H. Van, B. K. May, A. T. Smith, Heliyon2020, 6 (8), e04715.
- 41H. Shentu, P. Ye, Q. Zhou, P. Li, Q. Gu, Biochemistry and Biophysics Reports 2023, 35, 101494.
- 42J. Henderson, A. Chopko, P. van Wassenaar, Arch. Biochem. Biophys. 1992, 295 (1), 5–12.
- 43N. Rose, P. Sporns, L. McMullen, Food Agric Immunol2001, 13 (4), 225–239.
- 44X. Qiao, R. Du, Y. Wang, Y. Han, Z. Zhou, Int. J. Biol. Macromol. 2020, 144, 151–159.
- 45A. M. Suárez, J. I. Azcona, J. M. Rodríguez, B. Sanz, P. E. Hernández, Appl. Environ. Microb. 1997, 63 (12), 4990–4992.
- 46K. Naghmouchi, D. Drider, I. Fliss, J. AOAC Int. 2008, 91, 828–832.
- 47L. Al-Madboly, N. M. El-Deeb, A. Kabbash, M. A. Nael, A. M. Kenawy, A. E. Ragab, Front. Bioeng. Biotechnol. 2020, 8, 450.
- 48S. Ren, X. Yuan, F. Liu, F. Fang, H. M. N. Iqbal, S. A. Zahran, M. Bilal, Sustainability 2022, 14 (15), 9571.
- 49D. Lahiri, S. Chakraborti, A. Jasu, M. Nag, B. Dutta, S. Dash, R. R. Ray, Biocatal. Agric. Biotechnol. 2020, 30, 101845.
- 50P. Ye, J. Wang, M. Liu, P. Li, Q. Gu, LWT 2021, 143, 111125.
- 51M. Dai, Y. Li, L. Xu, D. Wu, Q. Zhou, P. Li, Q. Gu, Front. Nutr. 2021, 8, 710862.
- 52V. Sharma, G. K. Aseri, P. K. Bhagwat, N. Jain, R. C. Ranveer, Food Front 2022, 3 (1), 172–181.
- 53M. Zacharof, G. M. Coss, S. J. Mandale, R. W. Lovitt, Process Biochem. 2013, 48 (8), 1252–1261.
- 54P. Muriana, T. Klaenhammer, Appl. Environ. Microb. 1991, 57 (1), 114–121.
- 55J. Zhang, Y. Zhang, Y. Wen, Q. Gao, D. Wang, M. Zhao, Y. Han, Z. Zhou, Sep. Sci. Technol. 2014, 49, 1978–1984.
- 56S. Deraz, F. M. Plieva, I. Y. Galaev, E. N. Karlsson, B. Mattiasson, Enzyme Microb. Technol. 2007, 40 (4), 786–793.
- 57N. F. H. Abdul Aziz, S. Abbasiliasi, Z. J. Ng, M. Abu Zarin, S. N. Oslan, J. S. Tan, A. B. Ariff, Molecules 2020, 25, 5332.
- 58Y. Li, S. Yu, P. Weng, Z. Wu, Y. Liu, LWT 2023, 185, 115123.
- 59Ruben R. G. Soares, Ana M. Azevedo, James M. Van Alstine, M. Raquel Aires-Barros, Biotechnol. J. 2015, 10, 1158–1169.
- 60H. Seo, C. Nam, E. Kim, J. Son, H. Lee, ACS Appl. Mater. Interfaces 2020, 12 (49), 55467–55475.
- 61L. S. Castro, P. Pereira, L. A. Passarinha, M. G. Freire, A. Q. Pedro, Sep. Purif. Technol. 2020, 248, 117051.
- 62L. Nie, Z. Zheng, M. Lu, S. Yao, D. Guo, Int. J. Mol. Sci. 2022, 23 (20), 12706.
- 63F. H. Sosa, I. Kilpeläinen, J. Rocha, J. A. Coutinho, Fluid Phase Equilib. 2023, 573, 113857.
- 64Jianming Zhang, Yanyan Yang, Hui Yang, Yushan Bu, Huaxi Yi, Lanwei Zhang, Xue Han, Lianzhong Ai, Front. Microbiol. 2018, 9, 2165.
- 65Z. J. Ng, S. Abbasiliasi, T. Yew Joon, H. S. Ng, P. Phapugrangkul, J. S. Tan, Prep. Biochem. Biotechnol. 2023, 53 (7), 872–879.
- 66M. Mozgovicz, A. Fischer, C. Brocard, A. Jungbauer, N. Lingg, J. Chromatogr. A 2023, 1706, 464246.
- 67K. de Boer, K. Schroën, Sep. Purif. Technol. 2024, 337, 126288.
10.1016/j.seppur.2024.126288 Google Scholar
- 68R. Mileva, T. Petkova, Z. Yaneva, A. Milanova, Antibiotics (Basel) 2023, 12 (2), 268.