Advances and Challenges in Fluorescence-Based Biosensors for Biological and Chemical Detection
Salha Alharthi
Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
Search for more papers by this authorSarah Alharthi
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
Search for more papers by this authorMohamed Madani
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorHuda Alkhaldi
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorNadiah Aldaleeli
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorAlbandari Almarri
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorFatmah Alnass
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorDalal Alzahrani
College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, 31441 Saudi Arabia
Search for more papers by this authorSafwat A. Mahmoud
Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213 Saudi Arabia
Search for more papers by this authorCorresponding Author
Md Azizul Haque
Department of Biotechnology, Yeungnam University, Gyeongbuk, 38541 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mohamed S. Attia
Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAhmed Siddiq
Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
Search for more papers by this authorS. S. Aly
Department of Physics, College of Science, Qassim University, Buraydah, 51452 Saudi Arabia
Search for more papers by this authorCorresponding Author
Mohamed Mohamady Ghobashy
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSalha Alharthi
Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
Search for more papers by this authorSarah Alharthi
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
Search for more papers by this authorMohamed Madani
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorHuda Alkhaldi
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorNadiah Aldaleeli
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorAlbandari Almarri
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorFatmah Alnass
Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, 35811 Saudi Arabia
Search for more papers by this authorDalal Alzahrani
College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, 31441 Saudi Arabia
Search for more papers by this authorSafwat A. Mahmoud
Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213 Saudi Arabia
Search for more papers by this authorCorresponding Author
Md Azizul Haque
Department of Biotechnology, Yeungnam University, Gyeongbuk, 38541 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mohamed S. Attia
Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAhmed Siddiq
Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
Search for more papers by this authorS. S. Aly
Department of Physics, College of Science, Qassim University, Buraydah, 51452 Saudi Arabia
Search for more papers by this authorCorresponding Author
Mohamed Mohamady Ghobashy
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Fluorescence-based biosensors have become highly effective analytical instruments, revolutionizing the landscape of biological and chemical detection across diverse fields. These devices harness the unique properties of fluorescence to detect and quantify a wide array of analytes with remarkable sensitivity and specificity. By integrating biological recognition elements with advanced optical technologies, fluorescence-based biosensors provide high sensitivity, rapid detection, and real-time monitoring capabilities for diagnostic applications. This review discusses the fundamental principles of fluorescence biosensing, its key advantages, and the various types. The applications of these sensors span fields such as medicine, monitoring of the environment, food safety, biosecurity, and agriculture. Although fluorescence biosensors offer numerous benefits, the review also addresses the ongoing challenges and limitations researchers are working to overcome, such as photobleaching, background autofluorescence, and limited tissue penetration depth. The review emphasizes the critical design considerations and the continuous advancements in developing these innovative analytical tools, which are poised to transform the future of biological and chemical detection.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Open Research
Data Availability Statement
All data generated or analyzed during this study are included in this manuscript and available.
References
- 1B. Purohit, P. R. Vernekar, N. P. Shetti, P. Chandra, Sens. Int. 2020, 1, 100040.
10.1016/j.sintl.2020.100040 Google Scholar
- 2A. M. Gest, A. Z. Sahan, Y. Zhong, W. Lin, S. Mehta, J. Zhang, Chem. Rev. 2024, 124 (22), 12573–12660.
- 3D. Bhatia, S. Paul, T. Acharjee, S. S. Ramachairy, Sens. Int. 2024, 5, 100257.
10.1016/j.sintl.2023.100257 Google Scholar
- 4M. Kundu, P. Krishnan, R. Kotnala, G. Sumana, Trends Food Sci. Technol. 2019, 88, 157–178.
- 5W. Zhong, Anal. Bioanal. Chem. 2009, 394, 47–59.
- 6J. Yao, M. Yang, Y. Duan, Chem. Rev. 2014, 114 (12), 6130–6178.
- 7J. A. Broussard, K. J. Green, J. Invest. Dermatol. 2017, 137 (11), e185–e191.
- 8X. Ren, Y. Yuan, J. Li, B. Hu, Chin. J. Chem. 2025, 43 (5), 567–584.
- 9S. Al Abdullah, L. Najm, L. Ladouceur, F. Ebrahimi, A. Shakeri, N. Al-Jabouri, T. F. Didar, K. Dellinger, Adv. Funct. Mater. 2023, 33 (37), 2302673.
- 10C.-W. Huang, C. Lin, M. K. Nguyen, A. Hussain, X.-T. Bui, H. H. Ngo, Bioengineered 2023, 14 (1), 58–80.
- 11M. S. Attia, in Fundamentals of Biosensors in Healthcare, Elsevier, Amsterdam 2025, 265–313.
10.1016/B978-0-443-21658-9.00024-3 Google Scholar
- 12J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, A. Simonian, Chem. Soc. Rev. 2013, 42 (22), 8733–8768; S. Mittal, H. Kaur, N. Gautam, A. K. Mantha, Biosens. Bioelectron. 2017, 88, 217–231.
- 13V. Prajapati, S. Shinde, Biosens. Nanotechnol., 2nd Edition, 2023, 33–59.
10.1002/9781394167135.ch2 Google Scholar
- 14Q. Wu, Y. Zhang, Q. Yang, N. Yuan, W. Zhang, Sens. 2019, 19 (22), 4916.
- 15R. M. De Lorimier, J. J. Smith, M. A. Dwyer, L. L. Looger, K. M. Sali, C. D. Paavola, S. S. Rizk, S. Sadigov, D. W. Conrad, L. Loew, H. W. Hellinga, Protein Sci. 2002, 11 (11), 2655–2675.
- 16A. Kumar, K. Mahato, in Biosensors in Precision Medicine, Elsevier, Amsterdam 2024, 163–202.
10.1016/B978-0-443-15380-8.00007-2 Google Scholar
- 17A. Yu, X. He, T. Shen, X. Yu, W. Mao, W. Chi, X. Liu, H. Wu, Chem. Soc. Rev. 2025, 54, 2984–3016.
- 18M. Shoaib, H. Li, M. Zareef, I. M. Khan, M. W. Iqbal, S. Niazi, H. Raza, Y. Yan, Q. Chen, J. Agric. Food Chem. 2025, 73 (8), 4397–4424. DOI: https://doi.org/10.1021/acs.jafc.4c06338
- 19C. V. Stanley, Y. Xiao, T. Ling, D.-S. Li, P. Chen, Chem. Soc. Rev. 2025, 54 (7), 3557–3577.
- 20B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, Science 2006, 312 (5771), 217–224.
- 21E. A. Jares-Erijman, T. M. F. Jovin, Nat. Biotechnol. 2003, 21 (11), 1387–1395.
- 22D. K. Welsh, S. A. Kay, Curr. Opin. Biotechnol. 2005, 16 (1), 73–78.
- 23J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuators B 1999, 54 (1–2), 3–15.
- 24J. Langer, D. Jimenez De Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J García De Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Käll, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J.-F. Li, X. Y. Ling, S. A. Maier, T. Mayerhöfer, M. Moskovits, K. Murakoshi, J.-M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T. Shegai, S. Schlücker, Li-L Tay, K. G Thomas, Z.-Q. Tian, R. P. Van Duyne, T. Vo-Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B. Zhao, L. M. Liz-Marzán, ACS Nano 2019, 14 (1), 28–117.
- 25W. E. Omer, M. A. El-Kemary, M. M. Elsaady, M. N. Abou-Omar, A. O. Youssef, A. A. Sayqal, A. A. Gouda, M. S. Attia, ACS Omega 2020, 5 (11), 5629–5637.
- 26A. Haleem, M. Javaid, R. P. Singh, R. Suman, S. Rab, Sens. Int. 2021, 2, 100100.
10.1016/j.sintl.2021.100100 Google Scholar
- 27A. H. Hashem, E. Saied, B. M. Badr, M. S. Dora, M. A. Diab, A. M. Abdelaziz, F. M. Elkady, M. A. Ali, N. I. Issa, Z. A. Hamdy, M. E. Nafea, A. N. Khalifa, A. Adel, A. Hasib, A. M. Hawela, M. M. El-Gazzar, M. A. Nouh, A. A. Nahool, M. S. Attia, Arch. Microbiol. 2025, 207 (3), 1–35.
- 28H. Wang, E. Nakata, I. Hamachi, ChemBioChem 2009, 10 (16), 2560–2577.
- 29M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110 (5), 2641–2684.
- 30A. Singh, J. Dhau, R. Kumar, R. Badru, A. Kaushik, Phys. Chem. Chem. Phys. 2024, 26 (13), 9816–9847.
- 31S. Alharthi, M. M. Ghobashy, L. G. Amin, S. A. Mahmoud, W. E. Boraie, M. Madani, S. A. Al-Gahtany, R. Darwesh, A. Sharshir, M. S. Attia, ECS J. Solid State Sci. Technol. 2024, 13 (10), 107004.
- 32V. Naresh, N. Lee, Sensors 2021, 21 (4), 1109.
- 33X. Wang, J. Zhou, H. Wang, Cell Rep. Phys. Sci. 2024, 5 (2), 101801.
- 34M. Tewari, P. Rana, V. Pande, Indian J. Microbiol. 2024, 64 (2), 1–17.
- 35G. Li, R. Hilgenfeld, R. Whitley, E. De Clercq, Nat. Rev. Drug Discovery 2023, 22 (6), 449–475.
- 36A. Arya, A. Gangwar, A. Kumar, in Nanotechnology in Modern Animal Biotechnology, Elsevier, Amsterdam 2019, 75–95.
10.1016/B978-0-12-818823-1.00006-5 Google Scholar
- 37A. Pasquarelli, Biosensors and Biochips, Springer, Berlin 2021.
10.1007/978-3-030-76469-2 Google Scholar
- 38M. S. Attia, Fundamentals of Biosensors in Healthcare, Elsevier, Amsterdam 2025.
- 39E. A. Kamoun, M. Elsabahy, A. M. Mohamed Elbadry, E. B. Abdelazim, A. A. Mohsen, A. M. Aleem, H. Gao, N. G. Eissa, I. Elghamry, S. A. Salim, ACS Omega 2025, 10 (9), 8816–8831. DOI: https://doi.org/10.1021/acsomega.4c10652
- 40D. Elfadil, A. H. Hashem, M. S. Attia, G. S. El-Sayyad, in Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection, Springer, Berlin 2025, 323–356.
10.1007/978-981-97-8804-0_11 Google Scholar
- 41S. M. Yoo, S. Y. Lee, Trends Biotechnol. 2016, 34 (1), 7–25.
- 42T. Pedersen, L. Gurevich, N. E. Magnusson, Biosensors 2025, 15 (3), 166;
J. Kappen, K. Krukiewicz, in Fundamentals of Biosensors in Healthcare, Elsevier, Amsterdam 2025, 231–248.
10.1016/B978-0-443-21658-9.02002-7 Google Scholar
- 43L. Castillo-Henríquez, M. Brenes-Acuña, A. Castro-Rojas, R. Cordero-Salmerón, M. Lopretti-Correa, J. R. Vega-Baudrit, Sensors 2020, 20 (23), 6926.
- 44M. Pateraki, K. Fysarakis, V. Sakkalis, G. Spanoudakis, I. Varlamis, M. Maniadakis, M. Lourakis, S. Ioannidis, N. Cummins, B. Schuller, Wearable Implantable Med. Devices 2020, 7, 25–53.
10.1016/B978-0-12-815369-7.00002-1 Google Scholar
- 45M. S. Attia, N. N. Mohammad, M. Ghonem, M. M. Rabee, S. G. El-Sayed, S. I. Elmasry, H. A. Ahmed, H. G. Afify, M. Abdel-Mottaleb, in Novel Formulations and Future Trends, Elsevier, Amsterdam 2024, 85–123.
10.1016/B978-0-323-91816-9.00017-5 Google Scholar
- 46F. W. Campbell, R. G. Compton, Anal. Bioanal. Chem. 2010, 396, 241–259.
- 47F. Schachinger, H. Chang, S. Scheiblbrandner, R. Ludwig, Molecules 2021, 26 (15), 4525.
- 48A. A. Karyakin, O. V. Gitelmacher, E. E. Karyakina, Anal. Chem. 1995, 67 (14), 2419–2423.
- 49P. Bollella, Anal. Chim. Acta 2022, 1234, 340517.
- 50F. Silveri, D. Paolini, F. Della Pelle, P. Bollella, A. Scroccarello, Y. Suzuki, E. Fukawa, K. Sowa, C. Di Franco, L. Torsi, D. Compagnone, Biosens. Bioelectron. 2023, 237, 115450.
- 51H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V. K. Gupta, S. Rajendran, A. Ayati, Li Fu, A. L. Sanati, B. Tanhaei, F. Sen, M. Shabani-Nooshabadi, P. N. Asrami, A. Al-Othman, Biosens. Bioelectron. 2021, 184, 113252.
- 52C. Zuliani, D. Diamond, Electrochim. Acta 2012, 84, 29–34.
- 53A. J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J. R. Windmiller, G. Valdés-Ramírez, F. J. Andrade, M. J. Schöning, J. Wang, Biosens. Bioelectron. 2014, 54, 603–609.
- 54A. R. Ferrão, P. Pestana, L. Borges, R. Palmeira-de-Oliveira, A. Palmeira-de-Oliveira, J. Martinez-de-Oliveira, Biomedicines 2024, 12 (8), 1848.
- 55D. Sadighbayan, M. Hasanzadeh, E. Ghafar-Zadeh, TrAC Trends Anal. Chem. 2020, 133, 116067.
- 56T. Wadhera, D. Kakkar, G. Wadhwa, B. Raj, J. Electron. Mater. 2019, 48, 7635–7646.
- 57L. Chen, S. Shuai, S. Lu, Z. Xiang, H. Xu, W. Lu, J. Magn. Magn. Mater. 2023, 588, 171466.
- 58K. Y. Hwang, Advanced Magnetic Sensing Technologies for Enhanced Biodetection and Healthcare Monitoring, University of South Florida, Tampa, FL 2024.
- 59L. Gloag, M. Mehdipour, D. Chen, R. D. Tilley, J. J. Gooding, Adv. Mater. 2019, 31 (48), 1904385.
- 60J. Devkota, J. Wingo, T. Mai, X. Nguyen, N. Huong, P. Mukherjee, H. Srikanth, M. Phan, J. Appl. Phys. 2014, 115 (17), 17B503.
- 61V. O. Jimenez, K. Y. Hwang, D. Nguyen, Y. Rahman, C. Albrecht, B. Senator, O. Thiabgoh, J. Devkota, V. D. An Bui, D. S. Lam, T. Eggers, M.-H. Phan, Biosensors 2022, 12 (7), 517.
- 62I. Berman, J. Devkota, K. Y. Hwang, M.-H. Phan, Appl. Sci. 2023, 13 (10), 6011.
- 63B. T. Ingram, S. D. Mayhew, A. P. Bagshaw, Hum. Brain Mapp. 2024, 45 (10), e26746.
- 64Z. Feng, S. Zhi, L. Guo, Y. Zhou, C. Lei, Microchim. Acta 2019, 186, 1–14.
- 65O. Thiabgoh, T. Eggers, M.-H. Phan, Sens. Actuators A: Physical 2017, 265, 120–126.
- 66N. Sagar Shrikrishna, R. Sharma, J. Sahoo, A. Kaushik, S. Gandhi, Chem. Eng. J. 2024, 490, 151661.
- 67M. A. Abdhul Rahuman, N. S. Kahatapitiya, V. N. Amarakoon, U. Wijenayake, B. N. Silva, M. Jeon, J. Kim, N. K. Ravichandran, R. E. Wijesinghe, Technologies 2023, 11 (6), 157.
- 68C. Lv, S. Wang, C. Shi, Ann. Biomed. Eng. 2020, 48, 669–681.
- 69D. S. Yurkewich, A. Escoto, A. L. Trejos, M.-E. LeBel, R. V. Patel, M. D. Naish, Low-Cost Force-Sensing Arthroscopic Tool Using Threaded Fiber Bragg Grating Sensors, IEEE, Piscataway, NJ 2014, 28–33.
10.1109/BIOROB.2014.6913747 Google Scholar
- 70H. H. Nguyen, J. Park, S. Kang, M. Kim, Sensors 2015, 15 (5), 10481–10510.
- 71B. Serafin, A. Kamen, G. De Crescenzo, O. Henry, Appl. Microbiol. Biotechnol. 2024, 108 (1), 1–10.
- 72C. Dubois, É. Ducas, A. Laforce-Lavoie, J. Robidoux, A. Delorme, L. S. Live, D. Brouard, J.-F. Masson, Transfusion (Paris) 2024, 64 (5), 881–892.
- 73R. N. Lopes, P. H. S. Pinto, J. D. L. Vargas, A. Dante, A. Macrae, R. C. B. Allil, M. M. Werneck, Polymers 2024, 16 (6), 861.
- 74M. M. Ghobashy, A. M. A. Reheem, N. A. Mazied, Int. Polym. Proc. 2017, 32 (2), 174–182.
- 75N. Wang, Y. Yao, P. Wu, L. Zhao, J. Chen, Sensors 2024, 24 (7), 2253.
- 76J. P. Smith, A. Martin, D. L. Sammons, C. Striley, R. Biagini, J. Quinn, R. Cope, J. E. Snawder, Toxicol. Mech. Methods 2009, 19 (6–7), 416–421.
- 77Y. Zhao, C. Li, Z. Lin, Y. Wang, R. Tong, L. Cai, Sens. Actuators B 2024, 416, 135999.
- 78N. Kilinc, O. Sisman, C. Tasaltin, I. Gurol, in Complex and Composite Metal Oxides for Gas, VOC and Humidity Sensors, Volume 2, Elsevier, Amsterdam 2024, 465–500.
10.1016/B978-0-323-95476-1.00005-8 Google Scholar
- 79B. Liu, Y. Li, R. Wang, X. Chen, J. Li, H. Chen, M. Jiang, Opt. Fiber Technol. 2024, 84, 103770.
- 80H. Qiu, Y. Yao, Y. Dong, J. Tian, Biosens. Bioelectron. 2024, 255, 116265.
- 81N. S. Rahim, S. S. Al-Bassam, J. Optics 2024, 53 (4), 2937–2942.
10.1007/s12596-023-01604-0 Google Scholar
- 82N. Yao, S. Wang, Opt. Laser Technol. 2024, 176, 111040.
- 83H. Li, S. Nam, Z. Lu, C. Yang, E. Psomopoulou, N. F. Lepora, IEEE Rob. Autom. Lett. 2024, 9 (6), 5314–5321. DOI: https://doi.org/10.1109/LRA.2024.3387111
- 84J. A. Solano-Castellanos, W. K. Do, M. D. Kennedy, SN Comput. Sci. 2024, 5 (4), 372.
10.1007/s42979-024-02731-6 Google Scholar
- 85M. L. Preti, F. Bernabei, A. B. Nardin, L. Beccai, IEEE Sens. J. 2024, 24 (17), 27956–27965. DOI: https://doi.org/10.1109/JSEN.2024.3425835
- 86K. Kitagawa, K. Tsuji, K. Sagehashi, T. Niiyama, S. Sunada, Opt. Express 2024, 32 (3), 3209–3220.
- 87Y. Liu, R. Bao, J. Tao, J. Li, M. Dong, C. Pan, Sci. Bull. 2020, 65 (1), 70–88.
- 88R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Adv. Funct. Mater. 2021, 31 (11), 2008936.
- 89M. A. Tahir, N. E. Dina, H. Cheng, V. K. Valev, L. Zhang, Nanoscale 2021, 13 (27), 11593–11634.
- 90S. Eslami, S. Palomba, Nano Convergence 2021, 8 (1), 41.
- 91R. Mehrotra, M. Soohoo, M. B. Rivara, J. Himmelfarb, A. K. Cheung, O. A. Arah, A. R. Nissenson, V. Ravel, E. Streja, S. Kuttykrishnan, R. Katz, M. Z. Molnar, K. Kalantar-Zadeh, J. Am. Soc. Nephrol. 2016, 27 (7), 2123–2134.
- 92S. Heydari, G. H. Haghayegh, J. Sens. Technol. 2014, 4 (2), 81–100. DOI: https://doi.org/10.4236/jst.2014.42009
10.4236/jst.2014.42009 Google Scholar
- 93T. M. Peduru Hewa, G. A. Tannock, D. E. Mainwaring, S. Harrison, J. V. Fecondo, J. Virol. Methods 2009, 162 (1–2), 14–21.
- 94N. Alanazi, M. Almutairi, A. N. Alodhayb, Sens. Imaging 2023, 24 (1), 10.
- 95D. Li, J. Wang, R. Wang, Y. Li, D. Abi-Ghanem, L. Berghman, B. Hargis, H. Lu, Biosens. Bioelectron. 2011, 26 (10), 4146–4154.
- 96R. Wang, Y. Li, Biosens. Bioelectron. 2013, 42, 148–155.
- 97M. Afzal, I. Kazmi, R. Khan, P. Rana, V. Kumar, F. A. Al-Abbasi, M. A. Zamzami, F. Anwar, Arch. Biochem. Biophys. 2017, 623, 58–63; M. Wang, D. Xi, Q. Ning, Hepatology Int. 2017, 11, 171–180.
- 98C. Yao, T. Zhu, J. Tang, R. Wu, Q. Chen, M. Chen, B. Zhang, J. Huang, W. Fu, Biosens. Bioelectron. 2008, 23 (6), 879–885.
- 99C. Yao, Y. Xiang, K. Deng, H. Xia, W. Fu, Sens. Actuators B 2013, 181, 382–387.
- 100L. Shen, Y. Zhang, F. Wang, S. Zhang, J. Yang, K. Fang, T. Yu, X. Wang, W. Zhang, S. Bi, Epidemiol. Infection 2011, 139 (8), 1159–1165.
- 101H. J. Lim, T. Saha, B. T. Tey, W. S. Tan, C. W. Ooi, Biosens. Bioelectron. 2020, 168, 112513.
- 102S. L. Lim, C.-W. Ooi, W. S. Tan, E.-S. Chan, K. L. Ho, B. T. Tey, Sens. Actuators B 2017, 252, 409–417.
- 103N. Wangmaung, S. Chomean, C. Promptmas, S. Mas-oodi, D. Tanyong, W. Ittarat, Biosens. Bioelectron. 2014, 62, 295–301.
- 104P. Sharma, A. Ghosh, B. Tudu, S. Sabhapondit, B. D. Baruah, P. Tamuly, N. Bhattacharyya, R. Bandyopadhyay, Sens. Actuators B 2015, 219, 146–157.
- 105L. Farzin, M. Shamsipur, L. Samandari, S. Sheibani, Talanta 2020, 206, 120201.
- 106L. A. Hiatt, D. E. Cliffel, Sens. Actuators B 2012, 174, 245–252.
- 107B. Zhou, Y. Hao, S. Chen, P. Yang, Microchim. Acta 2019, 186, 1–8.
- 108C. S. Tsai, Guided-Wave Acousto-Optics: Interactions, Devices, and Applications, Springer Science & Business Media, Berlin 2013.
- 109R. Baer, C. Flory, M. Tom-Moy, D. Solomon, in IEEE 1992 Ultrason. Symp. Proc., IEEE, Piscataway, NJ 1992, 293–298.
- 110K. Länge, B. E. Rapp, M. Rapp, Anal. Bioanal. Chem. 2008, 391, 1509–1519.
- 111E. Gizeli, N. J. Goddard, C. R. Lowe, A. C. Stevenson, Sens. Actuators B 1992, 6 (1–3), 131–137.
- 112O. Tamarin, S. Comeau, C. Déjous, D. Moynet, D. Rebière, J. Bezian, J. Pistré, Biosens. Bioelectron. 2003, 18 (5–6), 755–763d.
- 113M. R. Amirzada, Y. Khan, M. K. Ehsan, A. U. Rehman, A. A. Jamali, A. R. Khatri, Micromachines 2022, 13 (2), 314.
- 114J. Moll, S. M. D. Santos, B. Hils, F. Dornuf, I. R. M. D. Santos, O. C. Singer, N. Ferreirós, S. Labocha, A. Blücher, S. Harder, V. Krozer, Int. J. Clin. Pharmacol. Ther. 2016, 54 (3), 177.
- 115D. W. Branch, S. M. Brozik, Biosens. Bioelectron. 2004, 19 (8), 849–859.
- 116E. Berkenpas, S. Bitla, P. Millard, M. Pereira Da Cunha, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51 (11), 1404–1411.
- 117Y. Roh, J. Woo, Y. Hur, Y. E. Pak, in Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, Vol. 5763, SPIE, California 2005, 291–300.
10.1117/12.597399 Google Scholar
- 118T. M. Gronewold, Anal. Chim. Acta 2007, 603 (2), 119–128.
- 119J. Zhang, X. Zhang, X. Wei, Y. Xue, H. Wan, P. Wang, Anal. Chim. Acta 2021, 1164, 338321.
- 120A. M. M. Vargas, S. Sinha, R. Osborn, P. R. Arantes, A. Patel, S. Dewhurst, D. J. Hardy, A. Cameron, G. Palermo, M. R. O'Connell, Nucleic. Acids. Res. 2024, 52 (2), 921–939.
- 121N. Fourati, G. Attia, S. Khaoulani, C. Zerrouki, in Piezoelectric Sensors, Springer, Berlin 2023, 225–251.
10.1007/5346_2023_31 Google Scholar
- 122H.-L. Cai, Y. Yang, X. Chen, M. A. Mohammad, T.-X. Ye, C.-R. Guo, L.-T. Yi, C.-J. Zhou, J. Liu, T.-L. Ren, Biosens. Bioelectron. 2015, 71, 261–268.
- 123X. Liu, J.-Y. Wang, X.-B. Mao, Y. Ning, G.-J. Zhang, Anal. Chem. 2015, 87 (18), 9352–9359.
- 124J. T. Baca, V. Severns, D. Lovato, D. W. Branch, R. S. Larson, Sensors 2015, 15 (4), 8605–8614.
- 125T. Roberts, H. Bygrave, E. Fajardo, N. Ford, J. Int. AIDS Soc. 2012, 15 (2), 17324.
- 126S. Ten, U. Hashim, S. Gopinath, W. Liu, K. Foo, S. Sam, S. Rahman, C. Voon, A. Nordin, Biosens. Bioelectron. 2017, 93, 146–154.
- 127S. I. Zida, Y. D. Lin, Y. L. Khung, Adv. Mater. Technol. 2021, 6 (6), 2001018.
- 128J. Ji, Y. Pang, D. Li, Z. Huang, Z. Zhang, N. Xue, Y. Xu, X. Mu, Microsyst. Nanoeng. 2020, 6 (1), 4.
- 129H. Bhardwaj, Rajesh, G. Sumana, J. Food Sci. Technol. 2021, 59, 12–33.
- 130C. Yoon, S. Kim, Electron. Commerce Res. Appl. 2007, 6 (1), 102–112.
- 131M. Puiu, A.-M. Gurban, L. Rotariu, S. Brajnicov, C. Viespe, C. Bala, Sensors 2015, 15 (5), 10511–10525.
- 132W. Wen, X. Yan, C. Zhu, D. Du, Y. Lin, Anal. Chem. 2017, 89 (1), 138–156.
- 133A. Moulin, S. O'shea, M. E. Welland, Ultramicroscopy 2000, 82 (1–4), 23–31.
- 134M. L. Fritz, J. R. Miller, M. N. Bayoh, J. M. Vulule, J. R. Landgraf, E. D. Walker, Med. Vet. Entomol. 2013, 27 (4), 398–407.
- 135O. Hansen, A. Boisen, Nanotechnology 1999, 10 (1), 51.
- 136R. Mckendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt, C. Gerber, Proc. Natl. Acad. Sci. USA 2002, 99 (15), 9783–9788.
- 137C. Grogan, R. Raiteri, G. O'Connor, T. Glynn, V. Cunningham, M. Kane, M. Charlton, D. Leech, Biosens. Bioelectron. 2002, 17 (3), 201–207.
- 138Y. Arntz, J. D. Seelig, H. Lang, J. Zhang, P. Hunziker, J. Ramseyer, E. Meyer, M. Hegner, C. Gerber, Nanotechnology 2002, 14 (1), 86.
10.1088/0957-4484/14/1/319 Google Scholar
- 139J. T. Wu, J. Clin. Lab. Anal. 1994, 8 (1), 51–62.
- 140M. D. Antonik, N. P. D'Costa, J. H. Hoh, IEEE Eng. Med. Biol. Mag. 1997, 16 (2), 66–72.
- 141J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, S. H. Lee, Anal. Chem. 2005, 77 (20), 6571–6580.
- 142L. G. Carrascosa, M. Moreno, M. Álvarez, L. M. Lechuga, TrAC Trends Anal. Chem. 2006, 25 (3), 196–206.
- 143V. Dharuman, J. H. Hahn, Sens. Actuators B 2007, 127 (2), 536–544.
- 144J. Fritz, Cantilever Biosensors. Analyst 2008, 133 (7), 855–863.
- 145G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar, Nat. Biotechnol. 2001, 19 (9), 856–860.
- 146K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon, J. H. Park, T. S. Kim, Biosens. Bioelectron. 2005, 20 (10), 1932–1938.
- 147M. Alvarez, K. Zinoviev, M. Moreno, L. M. Lechuga, in Optical Biosensors, Elsevier, Amsterdam 2008, 419–452.
10.1016/B978-044453125-4.50012-7 Google Scholar
- 148C. Savran, T. Burg, J. Fritz, S. Manalis, Appl. Phys. Lett. 2003, 83 (8), 1659–1661.
- 149V. Özdemir, E. S. Dove, U. K. Gürsoy, S. Şardaş, A. Yıldırım, Ş. G. Yılmaz, I. Ömer Barlas, K. Güngör, A. Mete, S. Srivastava, J. Neural Transm. 2017, 124, 25–32.
- 150M. B. Kulkarni, N. H. Ayachit, T. M. Aminabhavi, Biosensors 2022, 12 (7), 543.
- 151A. Kapoor, S. Kumar, A. K. Arya, V. Nishad, H. Fatma, A. Gupta, S. Singh, in Biosensors for Foodborne Pathogens Detection, Elsevier, Amsterdam 2024, 223–246.
10.1016/B978-0-323-95586-7.00010-1 Google Scholar
- 152P. Skládal, TrAC Trends Anal. Chem. 2016, 79, 127–133.
- 153D. Srikrishna, Health Secur. 2024, 22 (2), 108–129.
- 154Q. Qiu, Y. Xu, Micromachines 2024, 15 (5), 653.
- 155H. Natesan, J. C. Bischof, ACS Biomater. Sci. Eng. 2017, 3 (11), 2669–2691.
- 156S. Kröger, B. Danielsson, in Handbook of Biosensors and Electronic Noses, CRC Press, Boca Raton, FL 2024, 279–298.
10.1201/9781003575177-16 Google Scholar
- 157M. M. Ghobashy, T. M. Mohamed, Polym. Bull. 2019, 76, 6245–6255.
- 158H. N. Abdelhamid, in Fundamentals of Biosensors in Healthcare, Elsevier, Amsterdam2025, 359–372.
10.1016/B978-0-443-21658-9.00009-7 Google Scholar
- 159S. M. Diene, L. Pinault, V. Keshri, N. Armstrong, S. Khelaifia, E. Chabrière, G. Caetano-Anolles, P. Colson, B. La Scola, J.-M. Rolain, P. Pontarotti, D. Raoult, Sci. Rep. 2019, 9 (1), 12173.
- 160F. Scheller, N. Siegbahn, B. Danielsson, K. Mosbach, Anal. Chem. 1985, 57 (8), 1740–1743.
- 161D. Kirstein, B. Danielsson, F. Scheller, K. Mosbach, Biosensors 1989, 4 (4), 231–239.
- 162C. F. Mandenius, L. Bülow, B. Danielsson, K. Mosbach, Appl. Microbiol. Biotechnol. 1985, 21, 135–142.
- 163K. Nilsson, K. Mosbach, in Methods in Enzymology, Vol. 135, Elsevier, Amsterdam 1987, 65–78.
- 164R. Das, S. Ghosh, A. Chatterjee, in Mining Biomedical Text, Images and Visual Features for Information Retrieval, Elsevier, Amsterdam 2025, 119–149.
10.1016/B978-0-443-15452-2.00008-X Google Scholar
- 165B. Danielsson, B. Mattiasson, K. Mosbach, in Applied Biochemistry and Bioengineering, Vol. 3, Elsevier, Amsterdam 1981, pp. 97–143.
- 166B. Danielsson, K. Mosbach, in Methods in Enzymology, Vol. 137, Elsevier, Amsterdam 1988, 181–197.
- 167A. Gassenmaier, H. Pfister, O. Hornstein, Arch. Dermatol. Res. 1986, 279, 73–76.
- 168J. Cai, M. Du, Z. Li, Adv. Mater. Technol. 2022, 7 (7), 2101182.
- 169K. Ramanathan, D. Antognini, A. Combes, M. Paden, B. Zakhary, M. Ogino, G. MacLaren, D. Brodie, K. Shekar, Lancet Resp. Med. 2020, 8 (5), 518–526.
- 170K. Ramanathan, B. R. Jönsson, B. Danielsson, Anal. Chim. Acta 2001, 427 (1), 1–10.
- 171M. Harborne, A. Mann, J. Gale, G. Rajeswaran, R. Boulton, M. A. Butt, PTH-73 Benchmark Audit of the Management of Post-Oesophagectomy Barrett's, BMJ Publishing Group, London 2021.
- 172Q. Meng, Y. Wang, Y. Long, Q. Wang, Y. Gao, J. Tian, C. Wu, B. Xie, Int. J. Antimicrob. Agents 2024, 64 (2), 107229.
- 173M. Saini, H. K. Yadav, P. Sen, M. Gupta, N. Chauhan, in Fundamentals of Biosensors in Healthcare, Elsevier, Amsterdam 2025, 109–135.
10.1016/B978-0-443-21658-9.00011-5 Google Scholar
- 174G. G. Nestorova, N. D. Crews, E. J. Guilbeau, Microfluid. Nanofluid. 2015, 19, 963–972.
- 175P. Peng, C. Liu, Z. Li, Z. Xue, P. Mao, J. Hu, F. Xu, C. Yao, M. You, TrAC Trends Anal. Chem. 2022, 152, 116605.
- 176G. G. Nestorova, V. L. Kopparthy, N. D. Crews, E. J. Guilbeau, Anal. Methods 2015, 7 (5), 2055–2063.
- 177J. Zhu, K. Hoettges, Y. Wang, H. Ma, P. Song, Y. Hu, E. G. Lim, Q. Zhang, Anal. Chem. 2025, 97 (8), 4515–4523. DOI: https://doi.org/10.1021/acs.analchem.4c06001
- 178Y. Wang, Q. Li, M. Chu, X. Kang, G. Liu, Biosyst. Eng. 2023, 230, 361–387.
- 179C. Maraveas, E. Simeonaki, D. Loukatos, K. G. Arvanitis, T. Bartzanas, M. I. Kotzabasaki, Energies 2023, 16 (9), 3867.
- 180J.-H. Tan, E. Ng, U. R. Acharya, C. Chee, Infrared Phys. Technol. 2009, 52 (4), 97–108.
- 181B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, J. Philip, Infrared Phys. Technol. 2012, 55 (4), 221–235.
- 182C. Li, M. Liu, H. Song, Y. Wu, S. Zhu, Sens. Actuators A 2023, 359, 114479.
- 183G. Liu, M. Hirtz, H. Fuchs, Z. Zheng, Small 2019, 15 (21), 1900564.
- 184D. A. Bullen, X. Wang, J. Zou, S.-W. Chung, C. Liu, C. A. Mirkin, MRS Online Proc. Lib. 2002, 758, 421–4210.
- 185A. Corletto, J. G. Shapter, Adv. Sci. 2021, 8 (1), 2001778.
- 186G. Liu, S. H. Petrosko, Z. Zheng, C. A. Mirkin, Chem. Rev. 2020, 120 (13), 6009–6047.
- 187K. K. Yadav, D. Shamir, H. Kornweitz, Y. Peled, M. Zohar, A. Burg, Small Meth. 2024, 8 (3), 2301118.
- 188M. Agostini, M. Cecchini, Nanotechnology 2021, 32 (31), 312001.
- 189J. Haaheim, O. A. Nafday, Scanning: J. Scanning Microscopies 2008, 30 (2), 137–150.
- 190M. D. Schlensog, T. M. Gronewold, M. Tewes, M. Famulok, E. Quandt, Sens. Actuators B 2004, 101 (3), 308–315.
- 191I. Y. Jung, J. S. Kim, B. R. Choi, K. Lee, H. Lee, Adv. Healthcare Mater. 2017, 6 (12), 1601475.
- 192Jo. A Welsch, G. R. Moe, R. Rossi, J. Adu-Bobie, R. Rappuoli, D. M. Granoff, J. Infect. Dis. 2003, 188 (11), 1730–1740.
- 193J. Freudenberg, S. Schelle, K. Beck, M. Von Schickfus, S. Hunklinger, Biosens. Bioelectron. 1999, 14 (4), 423–425.
- 194W. Barie, J. Chiasson, Int. J. Syst. Sci. 1996, 27 (11), 1153–1163.
- 195K. Länge, F. Bender, A. Voigt, H. Gao, M. Rapp, Anal. Chem. 2003, 75 (20), 5561–5566.
- 196K. Länge, B. E. Rapp, M. Rapp, Anal. Bioanal. Chem. 2008, 391, 1509–1519.
- 197O. Tamarin, M. Rube, J. L. Lachaud, V. Raimbault, D. Rebière, C. Dejous, Sensors 2019, 20 (1), 72.
10.3390/s20010072 Google Scholar
- 198E. Howe, G. Harding, Biosens. Bioelectron. 2000, 15 (11–12), 641–649.
- 199R. Moll, Assessing Core Reduction Strategies in the Early Acheulean of East and South Africa, PhD dissertation, University of the Witwatersrand, 2022.
- 200F. Caruso, Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology, Vol. 75, CRC Press, Boca Raton, FL 1999, 193.
- 201I. I. Leonte, High Frequency Acousto-Electric Microsensors for Liquid Analysis, University of Warwick, Coventry 2008.
- 202N. Oliver, C. Toumazou, A. Cass, D. Johnston, Diabetic Medicine 2009, 26 (3), 197–210.
- 203G. L. Cote, R. M. Lec, M. V. Pishko, IEEE Sens. J. 2003, 3 (3), 251–266.
- 204J.-Y. Sakong, J.-H. Kim, S.-S. Lee, Y.-R. Roh, J. Acoust. Soc. Korea 2007, 26 (1), 42–47.
- 205A. J. Cole, Wireless Chipless Liquid Sensing using a Slotted Cylindrical Resonator, University of Kent (United Kingdom), Canterbury 2018.
- 206G. Francis, Text and Technology: In Honour of John Sinclair, Vol. 1, John Benjamins Publishing, Amsterdam 1993, 137–156.
10.1075/z.64.10fra Google Scholar
- 207M. M. Ghobashy, M. A. Elhady, Compos. Commun. 2017, 3, 18–22.
- 208O. N. Oliveira Jr., R. M. Iost, J. R. Siqueira Jr., F. N. Crespilho, L. Caseli, ACS Appl. Mater. Interfaces 2014, 6 (17), 14745–14766.
- 209I. Mannelli, M. Minunni, S. Tombelli, M. Mascini, Biosens. Bioelectron. 2003, 18 (2–3), 129–140.
- 210R. Meyer, Genetically Engineered Food: Methods and Detection, Wiley, Hoboken, NJ 2003, 188–200.
10.1002/3527602631.ch10 Google Scholar
- 211M. Hernandez, D. Rodriguez-Lazaro, A. Ferrando, Curr. Anal. Chem. 2005, 1 (2), 203–221.
- 212Y. Shindo, H. Kuribara, T. Matsuoka, S. Futo, C. Sawada, J. Shono, H. Akiyama, Y. Goda, M. Toyoda, A. Hino, T. Asano, M. Hiramoto, A. Iwaya, S. I. Jeong, N. Kajiyama, H. Kato, H. Katsumoto, Y. M. Kim, H. S. Kwak, M. Ogawa, Y. Onozuka, K. Takubo, H. Yamakawa, F. Yamazaki, A. Yoshida, T. Yoshimura, J. AOAC Int. 2002, 85 (5), 1119–1126.
- 213A. Jupe, P. Livshits, S. Kahnert, M. Figge, S. Mross, M. Goertz, H. Kappert, H. Vogt, A. Goehlich, in Nanostructured Materials for the Detection of CBRN, Springer, Berlin 2018, 199–212.
10.1007/978-94-024-1304-5_15 Google Scholar
- 214Y. Q. Fu, J. Luo, X. Du, A. Flewitt, Y. Li, G. Markx, A. Walton, W. Milne, Sens. Actuators B 2010, 143 (2), 606–619.
- 215J. Joseph, B. Ma, B. Khuri-Yakub, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69 (2), 456–467.
10.1109/TUFFC.2021.3112917 Google Scholar
- 216D. Jana, J. Patil, S. Herkal, S. Nagarajaiah, L. Duenas-Osorio, Mech. Syst. Sig. Process. 2022, 169, 108723.
- 217Z. Rong, M. Zhang, Y. Ning, W. Pang, Sci. Rep. 2022, 12 (1), 16174.
- 218H. A. Alhadrami, Biotechnol. Appl. Biochem. 2018, 65 (3), 497–508.
- 219J. Sengupta, C. M. Hussain, Biomolecules 2023, 13 (7), 1024.
- 220J. M. George, A. Antony, B. Mathew, Microchim. Acta 2018, 185, 1–26.
- 221R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Proc. IEEE 2004, 92 (10), 1534–1548.
- 222P. Namdari, H. Daraee, A. Eatemadi, Nanoscale Res. Lett. 2016, 11, 1–16.
- 223H. Meskher, T. Ragdi, A. K. Thakur, S. Ha, I. Khelfaoui, R. Sathyamurthy, S. W. Sharshir, A. K. Pandey, R. Saidur, P. Singh, F. Sharifian Jazi, I. Lynch, Crit. Rev. Anal. Chem. 2024, 54 (7), 2398–2421.
- 224L. M. Bronstein, Z. B. Shifrina, Chem. Rev. 2011, 111 (9), 5301–5344.
- 225A. Olaru, C. Bala, N. Jaffrezic-Renault, H. Y. Aboul-Enein, Crit. Rev. Anal. Chem. 2015, 45 (2), 97–105.
- 226N. Ravindran, S. Kumar, M. Ca, N. ThirunavookarasuS, C. K. Sunil, Crit. Rev. Food Sci. Nutr. 2023, 63 (8), 1055–1077.
- 227S. K. Vashist, C. K. Dixit, B. D. MacCraith, R. O'Kennedy, Analyst 2011, 136 (21), 4431–4436.
- 228M. Majdinasab, R. K. Mishra, X. Tang, J. L. Marty, TrAC Trends Anal. Chem. 2020, 127, 115883.
- 229S. Ahmed, N. Shaikh, N. Pathak, A. Sonawane, V. Pandey, S. Maratkar, Tools, Techniques and Protocols for Monitoring Environmental Contaminants, Elsevier, Amsterdam 2019, 53–73.
10.1016/B978-0-12-814679-8.00003-0 Google Scholar
- 230A. Waffo, C. Yesildag, G. Caserta, S. Katz, I. Zebger, M. Lensen, U. Wollenberger, F. Scheller, Z. Altintas, Sens. Actuators B 2018, 275, 163–173.
- 231W. Gao, P. Li, S. Qin, Z. Huang, Y. Cao, X. Liu, Microchim. Acta 2019, 186, 1–8.
- 232M. Pan, J. Yang, S. Li, W. Wen, J. Wang, Y. Ding, S. Wang, Food Anal. Methods 2019, 12, 1007–1016.
- 233X. Xia, Y. Zun-Zhong, W. Jian, Y. Yi-Bin, Chin. J. Anal. Chem. 2010, 38 (7), 1052–1059.
10.1016/S1872-2040(09)60059-1 Google Scholar
- 234A. Blidar, B. Feier, M. Tertis, R. Galatus, C. Cristea, Anal. Bioanal. Chem. 2019, 411, 1053–1065.
- 235D.-X. Wang, Y.-X. Wang, J. Wang, J.-Y. Ma, B. Liu, A.-N. Tang, D.-M. Kong, Chem. Sci. 2022, 13 (15), 4364–4371;
M. O. Caglayan, in Fundamentals of Sensor Technology, Elsevier, Amsterdam 2023, 197–237.
10.1016/B978-0-323-88431-0.00016-8 Google Scholar
- 236S. Ramalingam, Development and Evaluation of Nanobiosensors for the Detection of Contaminants in Food, University of Guelph, Guelph 2021.
- 237Vikas, S. Gupta, K. Tejavath, R. Verma, Opt. Quantum Electron. 2020, 52, 1–14.
- 238Y. Li, K. Zhao, X. Du, Z. Wang, X. Hao, S. Liu, G. Guan, Synth. Met. 2012, 162 (1–2), 107–113.
- 239N. A. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, R. Zakaria, Results Phys. 2019, 13, 102255.
- 240S. Oh, M. Lee, N. Heo, S. Kim, J. Oh, Y. Lee, E. Jeon, H. Moon, H. Kim, T. Park, G. Moon, H. Chun, Y. Huh, Sensors 2019, 19 (18), 3839.
- 241D. Luna-Moreno, D. Monzón-Hernández, E. Noé-Arias, L. Regalado, Appl. Opt. 2012, 51 (21), 5161–5167.
- 242B. Singhal, S. Rana, in Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences, Apple Academic Press, Palm Bay, FL 2019, 249–292.
10.1201/9780429425660-7 Google Scholar
- 243I. Delove Tegladza, T. Qi, T. Chen, K. Alorku, S. Tang, W. Shen, D. Kong, A. Yuan, J. Liu, H. K. Lee, J. Hazard. Mater. 2020, 393, 122403.
- 244Y. Huang, L. Zhang, H. Zhang, Y. Li, L. Liu, Y. Chen, X. Qiu, D. Yu, Micromachines 2020, 11 (5), 526.
- 245K. N. Shushama, M. M. Rana, R. Inum, M. B. Hossain, Opt. Quantum Electron. 2017, 49, 1–13.
- 246M. S. Rahman, M. R. Hasan, K. A. Rikta, M. Anower, Opt. Mater. 2018, 75, 567–573.
- 247M. S. Rahman, M. S. Anower, M. R. Hasan, M. B. Hossain, M. I. Haque, Opt. Commun. 2017, 396, 36–43.
- 248Y. O. Yaman, N. Başaran, K. Karayagiz, Z. Vatansever, C. Yegin, Ö. Haluk Tekbaş, M. M. Sari, Advanced Molecularly Imprinting Materials, Wiley, Hoboken, NJ 2016, 217–282.
10.1002/9781119336181.ch6 Google Scholar
- 249Y. Saylan, S. Akgönüllü, D. Çimen, A. Derazshamshir, N. Bereli, F. Yılmaz, A. Denizli, Sens. Actuators B 2017, 241, 446–454.
- 250Y. Hirakawa, T. Yamasaki, A. Harada, S. Iwasa, H. Narita, S. Miyake, Anal. Sci. 2018, 34 (5), 533–539.
- 251Y. Guo, R. Liu, Y. Liu, D. Xiang, Y. Liu, W. Gui, M. Li, G. Zhu, Sci. Total Environ. 2018, 613, 783–791.
- 252A. R. Sadrolhosseini, S. A. Rashid, H. Soleimani, S. Shafie, A. Noor, A. Mohammadi, J. Phys.: Conf. Ser. 2018, 1123, 012016.
10.1088/1742-6596/1123/1/012016 Google Scholar
- 253G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, M. Hoorfar, Sensors 2015, 15 (12), 30011–30031.
- 254D. S. Dkhar, R. Kumari, S. J. Malode, N. P. Shetti, P. Chandra, J. Pharm. Biomed. Anal. 2023, 223, 115120.
- 255S. D. Hudson, G. Chumanov, Anal. Bioanal. Chem. 2009, 394 (3), 679–686.
- 256Y. Belotti, C. T. Lim, Anal. Chem. 2021, 93 (11), 4727–4738.
- 257M. J. Uddin, N. H. Bhuiyan, J. S. Shim, Sci. Rep. 2021, 11 (1), 1986.
- 258A. J. Hughes, R. K. C. Lin, D. M. Peehl, A. E. Herr, Proc. Natl. Acad. Sci. USA 2012, 109 (16), 5972–5977.
- 259Q. Zhang, H.-P. Bei, M. Zhao, Z. Dong, X. Zhao, Biomaterials 2022, 286, 121566.
- 260J. Nehring, M. Schutz, M. Dietz, I. Nasr, K. Aufinger, R. Weigel, D. Kissinger, IEEE Trans. Microwave Theory Tech. 2016, 65 (1), 229–244.
10.1109/TMTT.2016.2616873 Google Scholar
- 261Q. He, Y. Gao, L. Zhang, Z. Zhang, F. Gao, X. Ji, Y. Li, J. Shi, Biomaterials 2011, 32 (30), 7711–7720.
- 262C. Chircov, A. C. Bîrcă, A. M. Grumezescu, E. Andronescu, Molecules 2020, 25 (24), 6013.
- 263C.-W. Lee, H.-Y. Chang, J.-K. Wu, F.-G. Tseng, Biosens. Bioelectron. 2019, 133, 215–222.
- 264S. Savas, A. Ersoy, Y. Gulmez, S. Kilic, B. Levent, Z. Altintas, Materials 2018, 11 (9), 1541.
- 265X. Liu, L. Wang, J. Zhao, Y. Zhu, J. Yang, F. Yang, Sensors 2019, 19 (15), 3326.
- 266Y. Jin, Adv. Mater. 2012, 24 (38), 5153–5165.
- 267C. Srisomwat, A. Yakoh, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, O. Chailapakul, Anal. Chem. 2020, 93 (5), 2879–2887.
- 268G. Ruiz-Vega, K. Arias-Alpízar, E. de la Serna, L. N. Borgheti-Cardoso, E. Sulleiro, I. Molina, X. Fernàndez-Busquets, A. Sánchez-Montalvá, F. J. Del Campo, E. Baldrich, Biosens. Bioelectron. 2020, 150, 111925.
- 269L. Fang, X. Liao, B. Jia, L. Shi, L. Kang, L. Zhou, W. Kong, Biosens. Bioelectron. 2020, 164, 112255.
- 270J. Liu, M. Yue, S. Wang, Y. Zhao, J. Zhang, Adv. Funct. Mater. 2022, 32 (8), 2107769.
- 271L. Schulze, J. Henninger, M. Kadobianskyi, T. Chaigne, A. I. Faustino, N. Hakiy, S. Albadri, M. Schuelke, L. Maler, F. Del Bene, B. Judkewitz, Nat. Methods 2018, 15 (11), 977–983.
- 272H. Lu, G. M. Carroll, N. R. Neale, M. C. Beard, ACS Nano 2019, 13 (2), 939–953.
- 273B. T. Liu, X. H. Pan, D. Y. Nie, X. J. Hu, E. P. Liu, T. F. Liu, Adv. Mater. 2020, 32 (48), 2005912.
- 274B. Del Rosal, A. Benayas, Small Methods 2018, 2 (9), 1800075.
- 275R. W. Barrs, J. Jia, S. E. Silver, M. Yost, Y. Mei, Chem. Rev. 2020, 120 (19), 10887–10949.
- 276L. V. Wang, S. Hu, Science 2012, 335 (6075), 1458–1462.
- 277M. Wang, Q. Li, C. Shi, J. Lv, Y. Xu, J. Yang, S. L. Chua, L. Jia, H. Chen, Q. Liu, C. Huang, Y. Huang, J. Chen, M. Fang, Nat. Nanotechnol. 2023, 18 (4), 403–411.
- 278B. A. Taha, I. A. Al-Tahar, A. J. Addie, A. B. Mahdi, A. J. Haider, Y. Al Mashhadany, V. Chaudhary, N. Arsad, Appl. Mater. Today 2024, 38, 102229.