Versatile Eco-Friendly Activated Carbon–Based Green Catalysts: Energy and Environmental Applications
Mian Hamood-ur-Rehman
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000 Pakistan
Search for more papers by this authorCorresponding Author
Murid Hussain
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000 Pakistan
Faculty of Engineering and Technology, Muscat University, P.O. Box 550, Muscat, 130 Oman
E-mail: [email protected], [email protected]
Search for more papers by this authorParveen Akhter
Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
Search for more papers by this authorFarrukh Jamil
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000 Pakistan
Faculty of Engineering and Technology, Muscat University, P.O. Box 550, Muscat, 130 Oman
Search for more papers by this authorMian Hamood-ur-Rehman
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000 Pakistan
Search for more papers by this authorCorresponding Author
Murid Hussain
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000 Pakistan
Faculty of Engineering and Technology, Muscat University, P.O. Box 550, Muscat, 130 Oman
E-mail: [email protected], [email protected]
Search for more papers by this authorParveen Akhter
Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
Search for more papers by this authorFarrukh Jamil
Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000 Pakistan
Faculty of Engineering and Technology, Muscat University, P.O. Box 550, Muscat, 130 Oman
Search for more papers by this authorAbstract
Biomass-derived activated carbon (AC) offers a sustainable solution for energy and environmental applications. Compared to coal-based AC, biomass-derived AC reduces environmental impact while maintaining high porosity and adsorption capacity. Its synthesis involves carbonization and activation, enhancing porosity and adsorption properties. Efficiency depends on particle size, surface area, pore structure, and functional groups. Smaller particles and higher surface areas enhance adsorption, whereas micropores serve as primary adsorption sites. Functional groups influence chemical interactions. Regeneration methods extend usability. AC-based catalysts improve hydrogen production and biodiesel synthesis. In wastewater treatment, iron oxide–impregnated AC enhances dye removal, whereas titania/AC composites boost photocatalytic degradation of organic pollutants. AC also plays a crucial role in carbon dioxide (CO2) capture, with potassium hydroxide (KOH)-synthesized AC optimizing micropore formation. AC faces challenges in biomass supply, logistics, regeneration efficiency, and adsorption selectivity, requiring innovative activation methods and surface modifications.
References
- 1I. Neme, G. Gonfa, C. Masi, Results Mater. 2022, 15, 100304. DOI: https://doi.org/10.1016/j.rinma.2022.100304
- 2X. Liu, Q. Li, G. Zhang, Y. Zheng, Y. Zhao, Powder Technol. 2022, 395, 424–442. DOI: https://doi.org/10.1016/j.powtec.2021.09.076
- 3M. Gayathiri, T. Pulingam, K. T. Lee, K. Sudesh, Chemosphere 2022, 294, 133764. DOI: https://doi.org/10.1016/j.chemosphere.2022.133764
- 4H. Liu, C. Cheng, H. Wu, Sci. Total Environ. 2021, 790, 148214. DOI: https://doi.org/10.1016/j.scitotenv.2021.148214
- 5Y. X. Gan, C (Basel) 2021, 7, 39. DOI: https://doi.org/10.3390/c7020039
- 6X. Wang, H. Cheng, G. Ye, J. Fan, F. Yao, Y. Wang, Y. Jiao, W. Zhu, H. Huang, D. Ye, Chemosphere 2022, 287, 131995. DOI: https://doi.org/10.1016/j.chemosphere.2021.131995
- 7A. T. Hoang, S. Kumar, E. Lichtfouse, C. K. Cheng, R. S. Varma, N. Senthilkumar, P. Q. Phong Nguyen, X. P. Nguyen, Chemosphere 2022, 302, 134825. DOI: https://doi.org/10.1016/j.chemosphere.2022.134825
- 8A. T. Nair, Aerobiologia (Bologna) 2021, 37, 185–203. DOI: https://doi.org/10.1007/s10453-021-09693-9
- 9A. O. Abo El Naga, M. El Saied, S. A. Shaban, F. Y. El Kady, J. Mol. Liq. 2019, 285, 9–19. DOI: https://doi.org/10.1016/J.MOLLIQ.2019.04.062
- 10V. Ferrer, M. Flores, H. Grandón, N. Escalona, C. Segura, J. Braz. Chem. Soc. 2023, 34, 287–301. DOI: https://doi.org/10.21577/0103-5053.20220107
- 11G. Crini, E. Lichtfouse, L. D. Wilson, N. Morin-Crini, Environ. Chem. Lett. 2019, 17, 195–213. DOI: https://doi.org/10.1007/s10311-018-0786-8
- 12K. T. Klasson, C. A. Ledbetter, M. Uchimiya, I. M. Lima, Environ. Chem. Lett. 2013, 11, 271–275. DOI: https://doi.org/10.1007/s10311-012-0398-7
- 13M. Lewoyehu, J. Anal. Appl. Pyrolysis 2021, 159, 105279. DOI: https://doi.org/10.1016/j.jaap.2021.105279
- 14T. Q. Romadiansyah, F. R. A. Lakuy, R. M. Iqbal, U. Zulfiani, A. W. Pratama, A. S. Purnomo, S. Subaer, T. Gunawan, Z. Rahmawati, Asranudin, N. Widiastuti, Case Stud. Chem. Environ. Eng. 2025, 11, 101035. DOI: https://doi.org/10.1016/J.CSCEE.2024.101035
- 15A. Reddy, A. K. Seriyala, C. Yogin Soodesh, Navjot, B. Roy, Recent Trends in Nanotechnology for Sustainable Living and Environment, Lecture Notes in Mechanical Engineering, Springer, Singapore 2023, 117–129. DOI: https://doi.org/10.1007/978-981-99-3386-0_10
10.1007/978-981-99-3386-0_10 Google Scholar
- 16M. Varsha, P. Senthil Kumar, B. Senthil Rathi, Chemosphere 2022, 287, 132270. DOI: https://doi.org/10.1016/j.chemosphere.2021.132270
- 17A. W. Samsuri, F. Sadegh-Zadeh, B. J. Seh-Bardan, Int. J. Environ. Sci. Technol. 2014, 11, 967–976. DOI: https://doi.org/10.1007/s13762-013-0291-3
- 18M. J. Prauchner, K. Sapag, F. Rodríguez-Reinoso, Carbon N. Y. 2016, 110, 138–147. DOI: https://doi.org/10.1016/J.CARBON.2016.08.092
- 19P. V. Thitame, S. R. Shukla, Int. J. Environ. Sci. Technol. 2016, 13, 561–570. DOI: https://doi.org/10.1007/S13762-015-0901-3/TABLES/3
- 20B. Janković, N. Manić, V. Dodevski, I. Radović, M. Pijović, Đ. Katnić, G. Tasić, J. Cleaner Prod. 2019, 236, 117614. DOI: https://doi.org/10.1016/j.jclepro.2019.117614
- 21U. Zulfiqar, N. Kostoglou, A. G. Thomas, C. Rebholz, A. Matthews, D. J. Lewis, Nanoscale 2021, 13, 15311–15323. DOI: https://doi.org/10.1039/D1NR03242A
- 22M. Panchal, O. P. Minugu, R. Gujjala, S. Ojha, S. Mallampati Chowdary, A. Mohammad, Polym. Compos. 2022, 43, 2276–2287. DOI: https://doi.org/10.1002/pc.26539
- 23M. Iwanow, T. Gärtner, V. Sieber, B. König, Beilstein J. Org. Chem. 2020, 16, 1188–1202. DOI: https://doi.org/10.3762/bjoc.16.104
- 24Y. Gao, Q. Yue, B. Gao, A. Li, Sci. Total Environ. 2020, 746, 141094. DOI: https://doi.org/10.1016/j.scitotenv.2020.141094
- 25J. Yang, L. Fu, F. Wu, X. Chen, C. Wu, Q. Wang, Catalysts 2022, 12, 1085. DOI: https://doi.org/10.3390/CATAL12101085
- 26H. B. Sharma, A. K. Sarmah, B. Dubey, Renewable Sustainable Energy Rev. 2020, 123, 109761. DOI: https://doi.org/10.1016/j.rser.2020.109761
- 27D. N. Faria, D. F. Cipriano, M. A. Schettino, Á. C. Neto, A. G. Cunha, J. C. C. Freitas, Mater. Chem. Phys. 2020, 249, 123173. DOI: https://doi.org/10.1016/j.matchemphys.2020.123173
- 28S. A. Sadeek, E. A. Mohammed, M. Shaban, M. T. H. Abou Kana, N. A. Negm, J. Mol. Liq. 2020, 306, 112749. DOI: https://doi.org/10.1016/J.MOLLIQ.2020.112749
- 29N. Asikin-Mijan, J. M. Ooi, G. AbdulKareem-Alsultan, H. V. Lee, M. S. Mastuli, N. Mansir, F. A. Alharthi, A. A. Alghamdi, Y. H. Taufiq-Yap, J. Cleaner Prod. 2020, 249, 119381. DOI: https://doi.org/10.1016/J.JCLEPRO.2019.119381
- 30D. N. Faria, D. F. Cipriano, M. A. Schettino, Á. C. Neto, A. G. Cunha, T. R. Lopes, J. C. C. Freitas, J. Environ. Chem. Eng. 2020, 8, 104208. DOI: https://doi.org/10.1016/j.jece.2020.104208
- 31B. E. Narowska, M. Kułażyński, M. Łukaszewicz, Catalysts 2020, 10, 1049. DOI: https://doi.org/10.3390/catal10091049
- 32Shobhana-Gnanaserkhar, N. Asikin-Mijan, G. AbdulKareem-Alsultan, Sivasangar-Seenivasagam, S. M. Izham, Y. H. Taufiq-Yap, Biomass Bioenergy 2020, 141, 105714. DOI: https://doi.org/10.1016/j.biombioe.2020.105714
- 33A. Bohlouli, L. Mahdavian, Biofuels 2021, 12, 885–898. DOI: https://doi.org/10.1080/17597269.2018.1558836
- 34C. Yogin Soodesh, A. K. Seriyala, Navjot, P. Chattopadhyay, N. Rozhkova, B. Michalkiewicz, S. Chatterjee, B. Roy, Chem. Eng. Res. Des. 2024, 203, 759–788. DOI: https://doi.org/10.1016/j.cherd.2024.02.002
- 35A. A. Abd, M. R. Othman, J. Kim, Environ. Sci. Pollut. Res. 2021, 28, 43329–43364. DOI: https://doi.org/10.1007/s11356-021-15121-9
- 36K. Kiełbasa, J. Siemak, J. Sreńscek-Nazzal, B. Benaouda, B. Roy, B. Michalkiewicz, Molecules 2024, 29, 4183. DOI: https://doi.org/10.3390/MOLECULES29174183
- 37W. Dong, Y. Zhang, X. Quan, Chemosphere 2020, 242, 125113. DOI: https://doi.org/10.1016/j.chemosphere.2019.125113
- 38M. Mariana, H. P. S. Abdul Khalil, E. M. Mistar, E. B. Yahya, T. Alfatah, M. Danish, M. Amayreh, J. Water Process Eng. 2021, 43, 102221. DOI: https://doi.org/10.1016/j.jwpe.2021.102221
- 39A. Akinyemi, O. Agboola, E. Alagbe, E. Igbokwe, Desalin. Water Treat. 2024, 320, 100780. DOI: https://doi.org/10.1016/J.DWT.2024.100780
- 40H. Li, F. Zheng, J. Wang, J. Zhou, X. Huang, L. Chen, P. Hu, J. Gao, Q. Zhen, S. Bashir, J. L. Liu, Chem. Eng. J. 2020, 390, 124513. DOI: https://doi.org/10.1016/j.cej.2020.124513
- 41W. Liu, X. Chu, H. Xu, T. Yang, Y. Qin, W. Zhao, Fuel 2022, 313, 123003. DOI: https://doi.org/10.1016/j.fuel.2021.123003
- 42J. H. Jacobs, N. Chou, K. H. McKelvie, J. A. Commodore, R. Sui, K. L. Lesage, K. G. Wynnyk, Y. Xiao, M. C. Biesinger, J. M. Hill, R. A. Marriott, Carbon Trends 2023, 10, 100243. DOI: https://doi.org/10.1016/j.cartre.2022.100243
- 43S. Kim, S.-E. Lee, S.-H. Baek, U. Choi, H.-J. Bae, Processes 2023, 11, 2877. DOI: https://doi.org/10.3390/pr11102877
- 44W. Zhu, Y. Wang, F. Yao, X. Wang, H. Zheng, G. Ye, H. Cheng, J. Wu, H. Huang, D. Ye, J. Environ. Sci. 2024, 139, 93–104. DOI: https://doi.org/10.1016/J.JES.2023.02.008
- 45Z. Khoshraftar, H. Masoumi, A. Ghaemi, Case Stud. Chem. Environ. Eng. 2023, 8, 100373. DOI: https://doi.org/10.1016/J.CSCEE.2023.100373
- 46M. Jafari, G. G. Botte, ACS Omega 2024, 9, 13134–13147. DOI: https://doi.org/10.1021/acsomega.3c09438
- 47N. A. Bakar, N. Othman, Z. M. Yunus, W. A. H. Altowayti, M. Tahir, N. Fitriani, S. N. A. Mohd-Salleh, Environ. Technol. Innov. 2021, 22, 101445. DOI: https://doi.org/10.1016/J.ETI.2021.101445
- 48E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, D. Prasetyoko, Mater. Today Chem. 2020, 16, 100233. DOI: https://doi.org/10.1016/j.mtchem.2019.100233
- 49S. M. Kharrazi, M. Soleimani, M. Jokar, T. Richards, A. Pettersson, N. Mirghaffari, Int. J. Biol. Macromol. 2021, 180, 299–310. DOI: https://doi.org/10.1016/J.IJBIOMAC.2021.03.078
- 50R M. Sari, F G. Torres, O P. Troncoso, G E. De-La-Torre, S. Gea, Environ. Qual. Manage. 2021, 30, 71–82. DOI: https://doi.org/10.1002/tqem.21737
10.1002/tqem.21737 Google Scholar
- 51Q. Yan, J. Li, Z. Cai, Carbon Lett. 2021, 31, 941–956. DOI: https://doi.org/10.1007/s42823-020-00205-2
- 52R. Zhu, Q. Yu, M. Li, H. Zhao, S. Jin, Y. Huang, J. Fan, J. Chen, J. Environ. Chem. Eng. 2021, 9, 105905. DOI: https://doi.org/10.1016/j.jece.2021.105905
- 53L. Khezami, A. Chetouani, B. Taouk, R. Capart, Powder Technol. 2005, 157, 48–56. DOI: https://doi.org/10.1016/j.powtec.2005.05.009
- 54Suhas, V. K. Gupta, P. J. M. Carrott, R. Singh, M. Chaudhary, S. Kushwaha, Bioresour. Technol. 2016, 216, 1066–1076. DOI: https://doi.org/10.1016/j.biortech.2016.05.106
- 55Suhas, P. J. M. Carrott, M. M. L. Ribeiro Carrott, Bioresour. Technol. 2007, 98, 2301–2312. DOI: https://doi.org/10.1016/j.biortech.2006.08.008
- 56V. H. Nguyen, D. T. Nguyen, T. T. Nguyen, H. P. T. Nguyen, H. B. Khuat, T. H. Nguyen, V. K. Tran, S. Woong Chang, P. Nguyen-Tri, D. D. Nguyen, D. D. La, Environ. Technol. Innov. 2021, 24, 101811. DOI: https://doi.org/10.1016/j.eti.2021.101811
- 57M. Blachnio, A. Derylo-Marczewska, B. Charmas, M. Zienkiewicz-Strzalka, V. Bogatyrov, M. Galaburda, Molecules 2020, 25, 5105. DOI: https://doi.org/10.3390/molecules25215105
- 58H.-Y. Wu, S. S. Chen, W. Liao, W. Wang, M.-F. Jang, W.-H. Chen, T. Ahamad, S. M. Alshehri, C.-H. Hou, K.-S. Lin, T. Charinpanitkul, K. C.-W. Wu, Environ. Res. 2020, 191, 110176. DOI: https://doi.org/10.1016/j.envres.2020.110176
- 59A. A. Ahmad, M. Al-Raggad, N. Shareef, Carbon Lett. 2021, 31, 957–971. DOI: https://doi.org/10.1007/s42823-020-00208-z
- 60M. Om Prakash, G. Raghavendra, S. Ojha, M. Panchal, Mater. Today Chem. 2021, 39, 1476–1481. DOI: https://doi.org/10.1016/j.matpr.2020.05.370
- 61Z. M. Yunus, G. Yashni, A. Al-Gheethi, N. Othman, R. Hamdan, N. N. Ruslan, Int. J. Environ. Anal. Chem. 2022, 102, 134–158. DOI: https://doi.org/10.1080/03067319.2020.1717477
- 62M. A. Yahya, Z. Al-Qodah, C. W. Z. Ngah, Renewable Sustainable Energy Rev. 2015, 46, 218–235. DOI: https://doi.org/10.1016/j.rser.2015.02.051
- 63O. Ioannidou, A. Zabaniotou, Renewable Sustainable Energy Rev. 2007, 11, 1966–2005. DOI: https://doi.org/10.1016/j.rser.2006.03.013
- 64M. Danish, T. Ahmad, Renewable Sustainable Energy Rev. 2018, 87, 1–21. DOI: https://doi.org/10.1016/J.RSER.2018.02.003
- 65S. Lv, C. Li, J. Mi, H. Meng, Appl. Surf. Sci. 2020, 510, 145425. DOI: https://doi.org/10.1016/J.APSUSC.2020.145425
- 66S. Das, S. Mishra, Mater. Chem. Phys. 2020, 245, 122751. DOI: https://doi.org/10.1016/J.MATCHEMPHYS.2020.122751
- 67T. E. Odetoye, M. S. Abu Bakar, J. O. Titiloye, Niger. J. Technol. Dev. 2019, 16, 71. DOI: https://doi.org/10.4314/njtd.v16i2.4
10.4314/njtd.v16i2.4 Google Scholar
- 68N. Radenahmad, A. T. Azad, M. Saghir, J. Taweekun, M. S. A. Bakar, M. S. Reza, A. K. Azad, Renewable Sustainable Energy Rev. 2020, 119, 109560. DOI: https://doi.org/10.1016/j.rser.2019.109560
- 69Z. Yang, Y. Zhou, Z. Feng, X. Rui, T. Zhang, Z. Zhang, Polymers (Basel) 2019, 11, 1252. DOI: https://doi.org/10.3390/polym11081252
- 70K. Ukanwa, K. Patchigolla, R. Sakrabani, E. Anthony, S. Mandavgane, Sustainability 2019, 11, 6204. DOI: https://doi.org/10.3390/su11226204
- 71S. Ullah, S. S. A. Shah, M. Altaf, I. Hossain, M. E. El Sayed, M. Kallel, Z. M. El-Bahy, A. U. Rehman, T. Najam, M. A. Nazir, J. Anal. Appl. Pyrolysis 2024, 179, 106480. DOI: https://doi.org/10.1016/j.jaap.2024.106480
- 72A. Pawar, N. L. Panwar, S. Jain, N. K. Jain, T. Gupta, Biomass Convers. Biorefin. 2023, 13, 7613–7622. DOI: https://doi.org/10.1007/s13399-021-01657-w
- 73I. Fatma, H. Assad, A. Kumar, C. M. Hussain, in Activated Carbon (Eds: C. Verma, M. A. Quraishi), The Royal Society of Chemistry 2023, 250–267. DOI: https://doi.org/10.1039/BK9781839169861-00250
10.1039/BK9781839169861-00250 Google Scholar
- 74M. S. Reza, C. S. Yun, S. Afroze, N. Radenahmad, M. S. A. Bakar, R. Saidur, J. Taweekun, A. K. Azad, Arab J. Basic Appl. Sci. 2020, 27, 208–238. DOI: https://doi.org/10.1080/25765299.2020.1766799
10.1080/25765299.2020.1766799 Google Scholar
- 75K. Czerwińska, M. Śliz, M. Wilk, Renewable Sustainable Energy Rev. 2022, 154, 111873. DOI: https://doi.org/10.1016/j.rser.2021.111873
- 76M. S. Reza, S. N. Islam, S. Afroze, M. S. Abu Bakar, R. S. Sukri, S. Rahman, A. K. Azad, Energy Ecol. Environ. 2020, 5, 118–133. DOI: https://doi.org/10.1007/s40974-019-00139-0
- 77R. F. Susanti, R. G. R. Wiratmadja, H. Kristianto, A. A. Arie, A. Nugroho, Mater. Today Proc. 2022, 63, S55–S60. DOI: https://doi.org/10.1016/J.MATPR.2022.01.042
- 78Y. Lin, H. Xu, Y. Gao, X. Zhang, Biomass Convers. Biorefin. 2023, 13, 3785–3796. DOI: https://doi.org/10.1007/S13399-021-01407-Y/FIGURES/10
- 79D. N. K. Putra Negara, T. G. Tirta Nindhia, C. I. P. Kusuma Kencanawati, I. G. A. K. Suriadi, I. M. Widiyarta, I. P. Lokantara, I. N. Budiarsa, J. Phys. Sci. 2023, 34, 1–20. DOI: https://doi.org/10.21315/jps2023.34.3.1
10.21315/jps2023.34.3.1 Google Scholar
- 80C. Li, Y. Li, Y. Shao, L. Zhang, S. Zhang, S. Wang, B. Li, Z. Cui, Y. Tang, X. Hu, Green Chem. 2023, 25, 2825–2839. DOI: https://doi.org/10.1039/D2GC04245B
- 81A. H. Wazir, I. U. Wazir, A. M. Wazir, Energy Sources, Part A 2020, 46 (1), 4875–4885. DOI: https://doi.org/10.1080/15567036.2020.1715512
- 82A. Vakili, A. A. Zinatizadeh, Z. Rahimi, S. Zinadini, P. Mohammadi, S. Azizi, A. Karami, M. Abdulgader, J. Cleaner Prod. 2023, 382, 134899. DOI: https://doi.org/10.1016/j.jclepro.2022.134899
- 83L. Deng, Y. Zhao, S. Sun, D. Feng, W. Zhang, Fuel 2024, 358, 130134. DOI: https://doi.org/10.1016/j.fuel.2023.130134
- 84L. Leng, Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang, H. Li, H. Huang, Sci. Total Environ. 2021, 763, 144204. DOI: https://doi.org/10.1016/j.scitotenv.2020.144204
- 85H. W. Lee, Y. M. Kim, S. Kim, C. Ryu, S. H. Park, Y. K. Park, Carbon Lett. 2018, 26, 1–10. DOI: https://doi.org/10.5714/CL.2018.26.001
- 86D. Karthik, V. Baheti, J. Militky, M. S. Naeem, V. Tunakova, A. Ali, Materials 2021, 14, 6433. DOI: https://doi.org/10.3390/ma14216433
- 87D. Akbulut, S. Pakseresht, T. Cetinkaya, A. O. Kurt, Diamond Relat. Mater. 2023, 136, 109970. DOI: https://doi.org/10.1016/J.DIAMOND.2023.109970
- 88N. A. Rashidi, S. Yusup, Chem. Eng. J. 2017, 314, 277–290. DOI: https://doi.org/10.1016/J.CEJ.2016.11.059
- 89S. Wong, N. Ngadi, I. M. Inuwa, O. Hassan, J. Cleaner Prod. 2018, 175, 361–375. DOI: https://doi.org/10.1016/J.JCLEPRO.2017.12.059
- 90K. Januszewicz, P. Kazimierski, M. Klein, D. Kardaś, J. Łuczak, Materials 2020, 13, 2047. DOI: https://doi.org/10.3390/ma13092047
- 91H. Yi, K. Nakabayashi, S.-H. Yoon, J. Miyawaki, Carbon N. Y. 2021, 183, 735–742. DOI: https://doi.org/10.1016/j.carbon.2021.07.061
- 92M. S. M. Zaini, S. S. A. Syed-Hassan, Recent Innovations Chem. Eng. 2022, 15, 127–137. DOI: https://doi.org/10.2174/2405520415666220425110926
- 93A. El-Naggar, S. S. Lee, J. Rinklebe, M. Farooq, H. Song, A. K. Sarmah, A. R. Zimmerman, M. Ahmad, S. M. Shaheen, Y. S. Ok, Geoderma 2019, 337, 536–554. DOI: https://doi.org/10.1016/j.geoderma.2018.09.034
- 94H. Yi, K. Nakabayashi, S. H. Yoon, J. Miyawaki, RSC Adv. 2022, 12, 2558–2563. DOI: https://doi.org/10.1039/D1RA08395C
- 95Z. Heidarinejad, M. H. Dehghani, M. Heidari, G. Javedan, I. Ali, M. Sillanpää, Environ. Chem. Lett. 2020, 18, 393–415. DOI: https://doi.org/10.1007/s10311-019-00955-0
- 96J. Cheng, S. C. Hu, G. T. Sun, K. Kang, M. Q. Zhu, Z. C. Geng, Energy 2021, 215, 119144. DOI: https://doi.org/10.1016/J.ENERGY.2020.119144
- 97N. Abuelnoor, A. AlHajaj, M. Khaleel, L. F. Vega, M. R. M. Abu-Zahra, Chemosphere 2021, 282, 131111. DOI: https://doi.org/10.1016/j.chemosphere.2021.131111
- 98Q. Liang, Y. Liu, M. Chen, L. Ma, B. Yang, L. Li, Q. Liu, Mater. Chem. Phys. 2020, 241, 122327. DOI: https://doi.org/10.1016/j.matchemphys.2019.122327
- 99M. I. Din, S. Ashraf, A. Intisar, Sci. Prog. 2017, 100, 299–312. DOI: https://doi.org/10.3184/003685017X14967570531606
- 100N. L. Panwar, A. Pawar, Biomass Convers. Biorefin. 2022, 12, 925–947. DOI: https://doi.org/10.1007/s13399-020-00870-3
- 101M. Joshi, D. Bhatt, A. Srivastava, Ind. Eng. Chem. Res. 2023, 62, 13748–13761. DOI: DOI: https://doi.org/10.1021/acs.iecr.3c02368
- 102K. Charoensook, C.-L. Huang, H.-C. Tai, V. V. K. Lanjapalli, L.-M. Chiang, S. Hosseini, Y.-T. Lin, Y.-Y. Li, J. Taiwan Inst. Chem. Eng. 2021, 120, 246–256. DOI: https://doi.org/10.1016/j.jtice.2021.02.021
- 103N. Isoda, R. Rodrigues, A. Silva, M. Gonçalves, D. Mandelli, F. C. A. Figueiredo, W. A. Carvalho, Powder Technol. 2014, 256, 175–181. DOI: https://doi.org/10.1016/j.powtec.2014.02.029
- 104K. Jedynak, B. Charmas, Adsorption 2024, 30, 167–183. DOI: https://doi.org/10.1007/s10450-023-00399-7
- 105İ. Demiral, C. Samdan, H. Demiral, Surf. Interfaces 2021, 22, 100873. DOI: https://doi.org/10.1016/j.surfin.2020.100873
- 106K. Dujearic-Stephane, M. Gupta, A. Kumar, V. Sharma, S. Pandit, P. Bocchetta, Y. Kumar, J. Compos. Sci. 2021, 5, 66. DOI: https://doi.org/10.3390/jcs5030066
- 107M. S. Hafizuddin, C. L. Lee, K. L. Chin, P. S. H'ng, P. S. Khoo, U. Rashid, Polymers (Basel) 2021, 13, 3954. DOI: https://doi.org/10.3390/polym13223954
- 108J. Ma, Y. Liu, S. Chen, Y. Du, H. Wu, Microporous Mesoporous Mater. 2022, 345, 112255. DOI: https://doi.org/10.1016/j.micromeso.2022.112255
- 109Yuliusman, T. M. Afifah, IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1173, 012019. DOI: https://doi.org/10.1088/1757-899X/1173/1/012019
- 110A. Arami-Niya, W. M. A. W. Daud, F. S. Mjalli, Chem. Eng. Res. Des. 2011, 89, 657–664. DOI: https://doi.org/10.1016/J.CHERD.2010.10.003
- 111I. Alouiz, M. Benhadj, E. Dahmane, M. Sennoune, M. Y. Amarouch, D. Mazouzi, Heliyon 2024, 10, e38886. DOI: https://doi.org/10.1016/J.HELIYON.2024.E38886
- 112M. Sevilla, N. Díez, A. B. Fuertes, ChemSusChem 2021, 14, 94–117. DOI: https://doi.org/10.1002/cssc.202001838
- 113G. E. Harimisa, N. W. C. Jusoh, L. S. Tan, K. Shameli, N. A. Ghafar, A. Masudi, J. Phys. Conf. Ser. 2022, 2259, 012009. DOI: https://doi.org/10.1088/1742-6596/2259/1/012009
10.1088/1742-6596/2259/1/012009 Google Scholar
- 114J. Serafin, B. Dziejarski, Environ. Sci. Pollut. Res. 2023 40008–40062. DOI: https://doi.org/10.1007/s11356-023-28023-9
- 115T. Somsiripan, C. Sangwichien, K. Tohdee, S. Semmad, S. Pap, Adsorpt. Sci. Technol. 2023, 2023. DOI: https://doi.org/10.1155/2023/8122712
- 116J. Serafin, B. Dziejarski, O. F. Cruz Junior, J. Sreńscek-Nazzal, Carbon N. Y. 2023, 201, 633–647. DOI: https://doi.org/10.1016/j.carbon.2022.09.013
- 117T. R. Brazil, M. Gonçalves, M. S. O. Junior, M. C. Rezende, Microporous Mesoporous Mater. 2020, 308, 110485. DOI: https://doi.org/10.1016/j.micromeso.2020.110485
- 118N. S. Razali, A. S. Abdulhameed, A. H. Jawad, Z. A. ALOthman, T. A. Yousef, O. K. Al-Duaij, N. S. Alsaiari, Molecules 2022, 27, 6947. DOI: https://doi.org/10.3390/molecules27206947
- 119S. Sathish, R. Nirmala, H. Y. Kim, R. Navamathavan, Carbon Lett. 2022, 32, 1151–1171. DOI: https://doi.org/10.1007/s42823-022-00348-4
- 120D. Soren, G. Mehena, P. Pattojoshi, P. K. Deheri, Fullerenes, Nanotubes Carbon Nanostruct. 2023, 31, 940–952. DOI: https://doi.org/10.1080/1536383X.2023.2226270
- 121L. Ge, X. Liu, H. Feng, H. Jiang, T. Zhou, H. Chu, Y. Zhang, C. Xu, Z. Wang, Fuel 2022, 314, 123140. DOI: https://doi.org/10.1016/J.FUEL.2022.123140
- 122M. F. Mohamad Yusop, E. Mohd Johan Jaya, M. A. Ahmad, Arabian J. Chem. 2022, 15, 104011. DOI: https://doi.org/10.1016/J.ARABJC.2022.104011
- 123S. Salem, Z. Teimouri, A. Salem, Adv. Powder Technol. 2020, 31, 4301–4309. DOI: https://doi.org/10.1016/j.apt.2020.09.007
- 124X. Zhang, X. Ma, Z. Yu, Y. Yi, C. Lu, X. Lu, J. Anal. Appl. Pyrolysis 2023, 173, 106061. DOI: https://doi.org/10.1016/j.jaap.2023.106061
- 125W. Chen, M. Luo, K. Yang, X. Zhou, Microporous Mesoporous Mater. 2020, 300, 110178. DOI: https://doi.org/10.1016/j.micromeso.2020.110178
- 126M. R. Mohd Ramli, N. F. Shoparwe, M. A. Ahmad, Arab J. Sci. Eng. 2023, 48, 8585–8594. DOI: https://doi.org/10.1007/S13369-022-07141-5/FIGURES/8
- 127E. Rápó, S. Tonk, Molecules 2021, 26, 5419. DOI: https://doi.org/10.3390/MOLECULES26175419
- 128M. Sajid, S. Bari, M. Saif Ur Rehman, M. Ashfaq, Y. Guoliang, G. Mustafa, Alex. Eng. J. 2022, 61, 7203–7212. DOI: https://doi.org/10.1016/J.AEJ.2021.12.060
- 129J. Qu, Y. Wang, X. Tian, Z. Jiang, F. Deng, Y. Tao, Q. Jiang, L. Wang, Y. Zhang, J. Hazard. Mater. 2021, 401, 123292. DOI: https://doi.org/10.1016/J.JHAZMAT.2020.123292
- 130A. Bazan-Wozniak, A. Nosal-Wiercińska, S. Yilmaz, R. Pietrzak, Measurement 2024, 226, 114129. DOI: https://doi.org/10.1016/J.MEASUREMENT.2024.114129
- 131H. Xu, L. Xu, Z. Wang, F. Wei, M. Zhang, Colloids Surf., A 2025, 711, 136327. DOI: https://doi.org/10.1016/J.COLSURFA.2025.136327
- 132X. Deng, Y. Liao, M. Wang, D. Xiao, Appl. Surf. Sci. 2024, 643, 158730. DOI: https://doi.org/10.1016/J.APSUSC.2023.158730
- 133X. Li, H. Tian, S. Yan, H. Shi, J. Wu, Y. Sun, Y. Xing, H. Bai, H. Zhang, Int. J. Hydrogen Energy 2024, 50, 324–336. DOI: https://doi.org/10.1016/J.IJHYDENE.2023.07.094
- 134L. R. de Carvalho Costa, L. de Moraes Ribeiro, G. E. N. Hidalgo, L. A. Féris, Environ. Technol. 2022, 43, 907–917. DOI: https://doi.org/10.1080/09593330.2020.1811391
- 135Renu, T. Sithole, S. Afr. J. Chem. Eng. 2024, 50, 39–50. DOI: https://doi.org/10.1016/J.SAJCE.2024.07.006
- 136Y. Shao, J. Li, X. Fang, Z. Yang, Y. Qu, M. Yang, W. Tan, G. Li, H. Wang, Chemosphere 2022, 287, 132118. DOI: https://doi.org/10.1016/J.CHEMOSPHERE.2021.132118
- 137B. S. Rathi, M. Trisha, S. Kaviya Selvi, R. Gokul, V. Renuka, Environ. Qual. Manage. 2024, 33, 907–928. DOI: https://doi.org/10.1002/TQEM.22166
10.1002/tqem.22166 Google Scholar
- 138X. Ying, G. Kim, I. Han, J. Sheng, Q. Mei, Y. Kim, KSCE J. Civ. Eng. 2022, 26, 2058–2067. DOI: https://doi.org/10.1007/S12205-022-1454-X/METRICS
- 139Y. Wang, G. Wu, Y. Zhang, Y. Su, H. Zhang, J. Cleaner Prod. 2024, 476, 143751. DOI: https://doi.org/10.1016/J.JCLEPRO.2024.143751
- 140X. Wang, X. Feng, Y. Ma, Biomass Convers. Biorefin. 2024, 14, 19563–19580. DOI: https://doi.org/10.1007/S13399-023-04173-1/FIGURES/17
- 141D. Yang, X. Du, IOP Conf. Ser. Earth Environ. Sci. 2022, 983, 012101. DOI: https://doi.org/10.1088/1755-1315/983/1/012101
10.1088/1755-1315/983/1/012101 Google Scholar
- 142J. Li, W. Zhou, Y. Su, Y. Zhao, W. Zhang, L. Xie, X. Meng, J. Gao, F. Sun, P. Wang, G. Zhao, Y. Qin, J. Cleaner Prod. 2022, 378, 134542. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.134542
- 143D. H. S. Santos, J. P. T. S. Santos, J. L. S. Duarte, L. M. T. M. Oliveira, J. Tonholo, L. Meili, C. L. P. S. Zanta, Process Saf. Environ. Prot. 2022, 159, 1150–1163. DOI: https://doi.org/10.1016/J.PSEP.2022.01.083
- 144X. Xing, J. Tang, S. Yao, H. Chen, T. Zheng, J. Wu, Process Saf. Environ. Prot. 2023, 170, 207–214. DOI: https://doi.org/10.1016/J.PSEP.2022.11.082
- 145L. Gazigil, E. Er, T. Yonar, Diamond Relat. Mater. 2023, 133, 109741. DOI: https://doi.org/10.1016/J.DIAMOND.2023.109741
- 146S. Z. Naji, C. T. Tye, Energy Convers. Manage: X 2022, 13, 100152. DOI: https://doi.org/10.1016/J.ECMX.2021.100152
- 147A. Das, S. Mondal, K. M. Hansda, M. K. Adak, D. Dhak, Appl. Catal., A 2023, 649, 118955. DOI: https://doi.org/10.1016/J.APCATA.2022.118955
- 148R. Xi, Y. Li, Y. Zhang, P. Wang, D. Hu, Int. J. Hydrogen Energy 2024, 51, 1–19. DOI: https://doi.org/10.1016/J.IJHYDENE.2023.08.032
- 149G. Sharma, S. Sharma, A. Kumar, C. W. Lai, M. Naushad, J. I Shehnaz, F. J. Stadler, Adsorpt. Sci. Technol. 2022, 2022, 4184809. DOI: https://doi.org/10.1155/2022/4184809
- 150A. Marandi, E. Kolvari, M. Gilandoust, M. A. Zolfigol, Diamond Relat. Mater. 2022, 124, 108908. DOI: https://doi.org/10.1016/J.DIAMOND.2022.108908
- 151A. Vilén, P. Laurell, R. Vahala, J. Environ. Manage. 2022, 324, 116356. DOI: https://doi.org/10.1016/J.JENVMAN.2022.116356
- 152M. Amin, E. Chung, H. H. Shah, Int. J. Environ. Sci. Technol. 2023, 20, 7645–7656. DOI: https://doi.org/10.1007/S13762-022-04472-6/FIGURES/7
- 153H. Bayahia, A. H. Fakeeha, S. A. Al-Zahrani, S. B. Alreshaidan, A. S. Al-Awadi, M. F. Alotibi, R. Kumar, A. S. Al-Fatesh, Arabian J. Chem. 2023, 16, 104781. DOI: https://doi.org/10.1016/j.arabjc.2023.104781
- 154Y. Wang, Y. Zhang, S. Zhao, J. Zhu, L. Jin, H. Hu, Carbon Resour. Convers. 2020, 3, 190–197. DOI: https://doi.org/10.1016/j.crcon.2020.12.002
- 155Y. Wu, R. N. Elhouda Tiri, M. Bekmezci, E. E. Altuner, A. Aygun, C. Mei, Y. Yuan, C. Xia, E.-N. Dragoi, F. Sen, Int. J. Hydrogen Energy 2023, 48, 21055–21065. DOI: https://doi.org/10.1016/j.ijhydene.2022.07.152
- 156T. Suprianto, Winarto, W. Wijayanti, I. N. G. Wardana, Int. J. Hydrogen Energy 2021, 46, 7147–7164. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.211
- 157D. H. Carrales-Alvarado, A. B. Dongil, J. M. Fernández-Morales, M. Fernández-García, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Catal. Sci. Technol. 2020, 10, 6790–6799. DOI: https://doi.org/10.1039/D0CY01088J
- 158P. Rechnia-Gorący, A. Malaika, M. Kozłowski, Catal. Today 2020, 357, 102–112. DOI: https://doi.org/10.1016/j.cattod.2019.05.055
- 159U. Neduvel Annal, A. Natarajan, R. Sahadevan, Energy Sources Part A 2022, 44, 9476–9488. DOI: https://doi.org/10.1080/15567036.2022.2132322
- 160K. Seffati, H. Esmaeili, B. Honarvar, N. Esfandiari, Renew Energy 2020, 147, 25–34. DOI: https://doi.org/10.1016/j.renene.2019.08.105
- 161R. Kishor, D. Purchase, G. D. Saratale, R. G. Saratale, L. F. R. Ferreira, M. Bilal, R. Chandra, R. N. Bharagava, J. Environ. Chem. Eng. 2021, 9, 105012. DOI: https://doi.org/10.1016/j.jece.2020.105012
- 162T. Islam, Md.R. Repon, T. Islam, Z. Sarwar, M. M. Rahman, Environ. Sci. Pollut. Res. 2022, 30, 9207–9242. DOI: https://doi.org/10.1007/s11356-022-24398-3
- 163S. Dasharathy, S. Arjunan, A. Maliyur Basavaraju, V. Murugasen, S. Ramachandran, R. Keshav, R. Murugan, Evid. Based Complement. Altern. Med. 2022, 2022, 1–11. DOI: https://doi.org/10.1155/2022/8011953
- 164M. du Plessis, C. Fourie, W. Stone, A.-M. Engelbrecht, Biochimie 2023, 209, 103–115. DOI: https://doi.org/10.1016/j.biochi.2023.02.006
- 165I. Khan, K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L. A. Shah, T. Shah, I. Khan, Water (Basel) 2022, 14, 242. DOI: https://doi.org/10.3390/w14020242
- 166P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, O. J. Oyewola, Results Eng. 2022, 16, 100678. DOI: https://doi.org/10.1016/j.rineng.2022.100678
- 167D. Rao Vaddi, R. Malla, S. Geddapu, Desalin. Water Treat. 2024, 317, 100146. DOI: https://doi.org/10.1016/j.dwt.2024.100146
10.1016/j.dwt.2024.100146 Google Scholar
- 168M. L. Sall, A. K. D. Diaw, D. Gningue-Sall, S. Efremova Aaron, J.-J. Aaron, Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. DOI: https://doi.org/10.1007/s11356-020-09354-3
- 169Kiran, R. Bharti, R. Sharma, Mater. Today Proc. 2022, 51, 880–885. DOI: https://doi.org/10.1016/j.matpr.2021.06.278
- 170M. Ullah, R. Nazir, M. Khan, W. Khan, M. Shah, S. G. Afridi, A. Zada, Soil Water Res. 2020, 15, 30–37. DOI: https://doi.org/10.17221/212/2018-SWR
- 171M. S. Saad, M. D. H. Wirzal, Z. A. Putra, J. Environ. Manage. 2021, 286, 112209. DOI: https://doi.org/10.1016/j.jenvman.2021.112209
- 172M. Muliari, I. Zulfahmi, Y. Akmal, N. W. K. Karja, C. Nisa, K. A. Sumon, M. M. Rahman, Environ. Sci. Pollut. Res. 2020, 27, 30592–30599. DOI: https://doi.org/10.1007/s11356-020-09410-y
- 173S. Mohammad, S. Baidurah, T. Kobayashi, N. Ismail, C. P. Leh, Processes 2021, 9, 739. DOI: https://doi.org/10.3390/pr9050739
- 174A. F. Dashti, N. A. S. Salman, R. Adnan, M. A. Zahed, Groundw Sustain Dev. 2022, 16, 100709. DOI: https://doi.org/10.1016/j.gsd.2021.100709
10.1016/j.gsd.2021.100709 Google Scholar
- 175Z. N. Hayawin, Z. B. Syirat, M. F. Ibrahim, J. N. Faizah, A. A. Astimar, A. W. Noorshamsiana, M. Ropandi, A. W. Nursulihatimarsyila, S. Abd-Aziz, Int. J. Environ. Sci. Technol. 2023, 20, 4325–4338. DOI: https://doi.org/10.1007/s13762-022-04268-8
- 176D. B. Anderson, C. A. Shaheed, J. Orthop. Sports Phys. Ther. 2022, 52, 425–431. DOI: https://doi.org/10.2519/jospt.2022.10788
- 177N. Alhusein, N. Charoenboon, K. Wichuwaranan, K. Poonsawad, V. Montrivade, M. B. Avison, L. Sringernyuang, H. Lambert, Glob Public Health 2024, 19 (1). DOI: https://doi.org/10.1080/17441692.2023.2298940
- 178Á. Moratalla, S. Cotillas, E. Lacasa, C. M. Fernández-Marchante, S. Ruiz, A. Valladolid, P. Cañizares, M. A. Rodrigo, C. Sáez, Process Saf. Environ. Prot. 2022, 168, 10–21. DOI: https://doi.org/10.1016/j.psep.2022.09.066
- 179M. Gras, V. Champel, K. Masmoudi, S. Liabeuf, Therapies 2020, 75, 419–428. DOI: https://doi.org/10.1016/j.therap.2020.02.019
- 180I. Lupșe, A. Muntean, I.-A. Chiș, A.-I. Daniliuc, M. Ghergie, Rom. J. Stomatol. 2021, 67, 71–75. DOI: https://doi.org/10.37897/RJS.2021.2.1
10.37897/RJS.2021.2.1 Google Scholar
- 181A. L. Moreno Ríos, K. Gutierrez-Suarez, Z. Carmona, C. G. Ramos, L. F. Silva Oliveira, Chemosphere 2022, 291, 132822. DOI: https://doi.org/10.1016/j.chemosphere.2021.132822
- 182X. Chen, L. Lei, S. Liu, J. Han, R. Li, J. Men, L. Li, L. Wei, Y. Sheng, L. Yang, B. Zhou, L. Zhu, Sci. Total Environ. 2021, 792, 148352. DOI: https://doi.org/10.1016/j.scitotenv.2021.148352
- 183X. Zhu, M. He, Y. Sun, Z. Xu, Z. Wan, D. Hou, D. S. Alessi, D. C. W. Tsang, J. Hazard. Mater. 2022, 423, 127060. DOI: https://doi.org/10.1016/j.jhazmat.2021.127060
- 184R. Y. Krishnan, S. Manikandan, R. Subbaiya, M. Biruntha, M. Govarthanan, N. Karmegam, Environ. Technol. Innov. 2021, 23, 101757. DOI: https://doi.org/10.1016/j.eti.2021.101757
- 185L. Tang, X. Y. Ma, Y. Wang, S. Zhang, K. Zheng, X. C. Wang, Y. Lin, Sci. Total Environ. 2020, 749, 141611. DOI: https://doi.org/10.1016/j.scitotenv.2020.141611
- 186S. Bakkaloglu, M. Ersan, T. Karanfil, O. G. Apul, Sci. Total Environ. 2021, 793, 148473. DOI: https://doi.org/10.1016/j.scitotenv.2021.148473
- 187Q. Wang, X. Tang, W. Zeng, F. Wang, W. Gong, J. Chen, J. Wang, G. Li, H. Liang, Water (Basel) 2022, 14, 367. DOI: https://doi.org/10.3390/w14030367
- 188G. Zeng, H. You, M. Du, Y. Zhang, Y. Ding, C. Xu, B. Liu, B. Chen, X. Pan, Chem. Eng. J. 2021, 412, 128498. DOI: https://doi.org/10.1016/j.cej.2021.128498
- 189R. Maniarasu, S. K. Rathore, S. Murugan, Energy Environ. 2023, 34, 1674–1721. DOI: https://doi.org/10.1177/0958305×221093465
- 190H. Patel, H. Weldekidan, A. Mohanty, M. Misra, Carbon Capture Sci. Technol. 2023, 8, 100128. DOI: https://doi.org/10.1016/j.ccst.2023.100128
- 191A. H. Lahuri, M. L. N. Khai, A. A. Rahim, N. Nordin, Acta Chim. Slov. 2020, 67, 570–580. DOI: https://doi.org/10.17344/acsi.2019.5572
- 192S. Reljic, E. O. Jardim, C. Cuadrado-Collados, M. Bayona, M. Martinez-Escandell, J. Silvestre-Albero, F. Rodríguez-Reinoso, in: Porous Materials. Engineering Materials (Eds: J. C. Moreno-Piraján, L. Giraldo-Gutierrez, F. Gómez-Granados), Springer, Cham 2021, 139–152. DOI: https://doi.org/10.1007/978-3-030-65991-2_5
10.1007/978-3-030-65991-2_5 Google Scholar
- 193Gautam, S. Sahoo, Therm. Sci. Eng. Prog. 2022, 33, 101339. DOI: https://doi.org/10.1016/j.tsep.2022.101339
- 194R. Chatterjee, B. Sajjadi, D. L. Mattern, W.-Y. Chen, T. Zubatiuk, D. Leszczynska, J. Leszczynski, N. O. Egiebor, N. Hammer, Fuel 2018, 225, 287–298. DOI: https://doi.org/10.1016/j.fuel.2018.03.145
- 195E. Surra, R. P. P. L. Ribeiro, T. Santos, M. Bernardo, J. P. B. Mota, N. Lapa, I. A. A. C. Esteves, J. Environ. Chem. Eng. 2022, 10, 107065. DOI: https://doi.org/10.1016/j.jece.2021.107065
- 196J. E. Sosa, C. Malheiro, R. P. Ribeiro, P. J. Castro, M. M. Piñeiro, J. M. Araújo, F. Plantier, J. P. Mota, A. B. Pereiro, J. Chem. Technol. Biotechnol. 2020, 95, 1892–1905. DOI: https://doi.org/10.1002/jctb.6371
- 197D. A. Khuong, K. T. Trinh, Y. Nakaoka, T. Tsubota, D. Tashima, H. N. Nguyen, D. Tanaka, Chemosphere 2022, 299, 134365. DOI: https://doi.org/10.1016/j.chemosphere.2022.134365
- 198S. M. W. Wilson, F. Al-Enzi, V. A. Gabriel, F. H. Tezel, Microporous Mesoporous Mater. 2021, 322, 111089. DOI: https://doi.org/10.1016/j.micromeso.2021.111089
- 199J. Serafin, M. Ouzzine, O. F. Cruz Junior, J. Sreńscek-Nazzal, Biomass Bioenergy 2021, 144, 105925. DOI: https://doi.org/10.1016/j.biombioe.2020.105925
- 200J. Serafin, M. Ouzzine, O. F. Cruz, J. Sreńscek-Nazzal, I. Campello Gómez, F.-Z. Azar, C. A. Rey Mafull, D. Hotza, C. R. Rambo, Waste Manage. (Oxford) 2021, 136, 273–282. DOI: https://doi.org/10.1016/j.wasman.2021.10.025
- 201N. A. Rashidi, A. Bokhari, S. Yusup, Environ. Sci. Pollut. Res. 2021, 28, 33967–33979. DOI: https://doi.org/10.1007/s11356-020-08823-z
- 202S. Wang, Y.-R. Lee, Y. Won, H. Kim, S.-E. Jeong, B. Wook Hwang, A. Ra Cho, J.-Y. Kim, Y. Cheol Park, H. Nam, D.-H. Lee, H. Kim, S.-H. Jo, Chem. Eng. J. 2022, 437, 135378. DOI: https://doi.org/10.1016/j.cej.2022.135378
- 203Y. Li, Y. Lin, J. Guo, Z. Xu, B. Wang, T. Zhu, Environ. Sci. Pollut. Res. 2022, 29, 26599–26612. DOI: https://doi.org/10.1007/s11356-021-17724-8
- 204B. Petrovic, M. Gorbounov, S. Masoudi Soltani, Carbon Capture Sci. Technol. 2022, 3, 100045. DOI: https://doi.org/10.1016/j.ccst.2022.100045
- 205X. Ma, L. Yang, H. Wu, J. Cleaner Prod. 2021, 302, 126925. DOI: https://doi.org/10.1016/j.jclepro.2021.126925
- 206X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Sep. Purif. Technol. 2020, 235, 116213. DOI: https://doi.org/10.1016/j.seppur.2019.116213
- 207S. H. Tang, N. A. Rashidi, H. Y. Lim, Environ. Dev. Sustain. 2025, 1–25. DOI: https://doi.org/10.1007/S10668-025-05998-8/FIGURES/4
- 208E. Sanz-Santos, P. Gutiérrez-Sánchez, Sep. Purif. Technol. 2024, 346, 127514. DOI: https://doi.org/10.1016/J.SEPPUR.2024.127514
- 209Y. Shen, Fuel 2023, 336, 126801. DOI: https://doi.org/10.1016/J.FUEL.2022.126801
- 210M. Sultana, M. H. Rownok, M. Sabrin, M. H. Rahaman, S. M. N. Alam, Clean. Eng. Technol. 2022, 6, 100382. DOI: https://doi.org/10.1016/J.CLET.2021.100382
- 211P. Mohammad-Gholikhan-Khalaj, S. F. Dehghan, M. Hasanzadeh, G. Hesam, Pollution 2024, 10, 888–898. DOI: https://doi.org/10.22059/poll.2024.369236.2169
- 212M. Gęca, M. Wiśniewska, P. Nowicki, Adv. Colloid Interface Sci. 2022, 305, 102687. DOI: https://doi.org/10.1016/J.CIS.2022.102687
- 213N. Prasetya, I. Gede Wenten, M. Franzreb, C. Wöll, Coord. Chem. Rev. 2023, 475, 214877. DOI: https://doi.org/10.1016/J.CCR.2022.214877