Challenges and Solutions in Solar Photovoltaic Technology Life Cycle
Nehar Ullah
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorAltaf Ahmad
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorRafia Sarfaraz
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorSaifullah Khalid
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorIrshad Ali
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorCorresponding Author
Dr. Mohammad Younas
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Chinese Academy of Sciences, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, 361021 Xiamen, China
Correspondence: Dr. Mohammad Younas ([email protected]), Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, Peshawar 25120, Pakistan; Dr. Mashallah Rezakazemi ([email protected]), Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.Search for more papers by this authorCorresponding Author
Dr. Mashallah Rezakazemi
Shahrood University of Technology, Faculty of Chemical and Materials Engineering, Shahrood, Iran
Correspondence: Dr. Mohammad Younas ([email protected]), Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, Peshawar 25120, Pakistan; Dr. Mashallah Rezakazemi ([email protected]), Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.Search for more papers by this authorNehar Ullah
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorAltaf Ahmad
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorRafia Sarfaraz
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorSaifullah Khalid
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorIrshad Ali
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Search for more papers by this authorCorresponding Author
Dr. Mohammad Younas
University of Engineering & Technology, Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, 25120 Peshawar, Pakistan
Chinese Academy of Sciences, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, 361021 Xiamen, China
Correspondence: Dr. Mohammad Younas ([email protected]), Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, Peshawar 25120, Pakistan; Dr. Mashallah Rezakazemi ([email protected]), Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.Search for more papers by this authorCorresponding Author
Dr. Mashallah Rezakazemi
Shahrood University of Technology, Faculty of Chemical and Materials Engineering, Shahrood, Iran
Correspondence: Dr. Mohammad Younas ([email protected]), Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, Peshawar 25120, Pakistan; Dr. Mashallah Rezakazemi ([email protected]), Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.Search for more papers by this authorAbstract
Solar energy offers a clean and abundant alternative to the challenges associated with fossil fuels such as greenhouse gas emissions and resource depletion. The review focuses on the environmental impacts of solar photovoltaic technology throughout its life cycle, from manufacturing to disposal, and highlights potential hazards associated with using and producing photovoltaic technology, including releasing toxic gases and other trace elements into the environment. The paper concludes by summarizing various recycling techniques that can be employed to address these challenges and to take full advantage of solar photovoltaic technology without causing harm to the environment.
References
- 1 N. K. Sharma, P. K. Tiwari, Y. R. Sood, Renewable Sustainable Energy Rev. 2012, 16 (1), 933–941. DOI: https://doi.org/10.1016/j.rser.2011.09.014
- 2 K. Kapoor, K. K. Pandey, A. Jain, A. Nandan, Renewable Sustainable Energy Rev. 2014, 40, 475–487. DOI: https://doi.org/10.1016/j.rser.2014.07.118
- 3
S. Chinnammai, Int. J. Environ. Sci. Dev.
2014, 5 (4), 404–411. DOI: https://doi.org/10.7763/IJESD.2014.V5.518
10.7763/IJESD.2014.V5.518 Google Scholar
- 4
K. Latif, M. Y. Raza, G. M. Chaudhary, A. Arshad, J. Account. Finance Emerging Econ.
2020, 6 (1), 167–182. DOI: https://doi.org/10.26710/jafee.v6i1.1075
10.26710/jafee.v6i1.1075 Google Scholar
- 5
Y. Huang, Energy J.
2014, 76, 254–263. DOI: https://doi.org/10.1016/j.energy.2014.07.093
10.1016/j.energy.2014.07.093 Google Scholar
- 6 P. V. Kamat, J. Phys. Chem. 2007, 111 (7), 2834–2860. DOI: https://doi.org/10.1021/jp066952u
- 7 D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Rev. 2019, 24, 38–50. DOI: https://doi.org/10.1016/j.esr.2019.01.006
- 8 K. Pal, P. Singh, A. Bhaduri, K. B. Thapa, Sol. Energy Mater. Sol. Cells 2019, 196, 138–156. DOI: https://doi.org/10.1016/j.solmat.2019.03.001
- 9 E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, K.-H. Kim, Renewable Sustainable Energy Rev. 2018, 82, 894–900. DOI: https://doi.org/10.1016/j.rser.2017.09.094
- 10 A. H. Elsheikh, S. W. Sharshir, M. Abd Elaziz, A. Kabeel, W. Guilan, Z. Haiou, J. Sol. Energy 2019, 180, 622–639. DOI: https://doi.org/10.1016/j.solener.2019.01.037
- 11 N. Ullah, M. A. McArthur, S. Omanovic, Can. J. Chem. Eng. 2015, 93 (11), 1941–1948. DOI: https://doi.org/10.1002/cjce.22318
- 12 M. H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M. Alhuyi Nazari, R. Kumar, A. Naeimi, T. Ming, Energy Sci. Eng. 2018, 6 (5), 340–361. DOI: https://doi.org/10.1002/ese3.239
- 13 M. B. Hayat, D. Ali, K. C. Monyake, L. Alagha, N. Ahmed, Int. J. Energy Res. 2019, 43 (3), 1049–1067. DOI: https://doi.org/10.1002/er.4252
- 14 I. Vezhenkova, M. Semenova, A. Kovalevskaya, A. Gryaznov, M. d. R. Rodríguez Barroso, R. Jiménez Castañeda, E3S Web Conf. 2020, 220, 01057. DOI: https://doi.org/10.1051/e3sconf/202022001057
- 15 M. S. Chowdhury, K. S. Rahman, T. Chowdhury, N. Nuthammachot, K. Techato, M. Akhtaruzzaman, S. K. Tiong, K. Sopian, N. Amin, Energy Strategy Rev. 2020, 27, 100431. DOI: https://doi.org/10.1016/j.esr.2019.100431
- 16 S. A. Khalifa, B. V. Mastrorocco, D. D. Au, S. Ovaitt, T. M. Barnes, A. C. Carpenter, J. B. Baxter, Prog. Photovoltaics 2022, 30 (7), 784–805. DOI: https://doi.org/10.1002/pip.3554
- 17 A. Alam, I. A. Malik, A. B. Abdullah, A. Hassan, U. Awan, G. Ali, K. Zaman, I. Naseem, Renewable Sustainable Energy Rev. 2015, 41, 818–829. DOI: https://doi.org/10.1016/j.rser.2014.08.071
- 18
F. Pacheco-Torgal, J. Faria, S. Jalali, Mater. Sci. Forum
2012, 730–732, 587–591. DOI: https://doi.org/10.4028/www.scientific.net/MSF.730-732.587
10.4028/www.scientific.net/MSF.730-732.587 Google Scholar
- 19
A. N. Celik, Duzce Univ. J. Sci. Technol.
2021, 9 (3), 500–519. DOI: https://doi.org/10.29130/dubited.827250
10.29130/dubited.827250 Google Scholar
- 20 M. Younas, M. Rezakazemi, M. Daud, M. B. Wazir, S. Ahmad, N. Ullah, Inamuddin, S. Ramakrishna, Prog. Energy Combust. Sci. 2020, 80, 100849. DOI: https://doi.org/10.1016/j.pecs.2020.100849
- 21 M. Bilgili, A. Ozbek, B. Sahin, A. Kahraman, Renewable Sustainable Energy Rev. 2015, 49, 323–334. DOI: https://doi.org/10.1016/j.rser.2015.04.148
- 22
J. Bielecki, Q. Rev. Econ. Finance
2002, 42 (2), 235–250. DOI: https://doi.org/10.1016/S1062-9769(02)00137-0
10.1016/S1062-9769(02)00137-0 Google Scholar
- 23 World Energy Outlook 2006, IEA, Paris 2006.
- 24 V. Fthenakis, J. E. Mason, K. Zweibel, Energy Policy 2009, 37 (2), 387–399. DOI: https://doi.org/10.1016/j.enpol.2008.08.011
- 25 R. Keles, Proc. Soc. Behav. Sci. 2012, 35, 23–32. DOI: https://doi.org/10.1016/j.sbspro.2012.02.059
- 26 I. Dincer, Energy Policy 1999, 27 (14), 845–854. DOI: https://doi.org/10.1016/S0301-4215(99)00068-3
- 27
I. Dincer, C. Zamfirescu, in Advanced Power Generation Systems, Elsevier, Amsterdam
2014, 369–453. DOI: https://doi.org/10.1016/B978-0-12-383860-5.00007-9
10.1016/B978-0-12-383860-5.00007-9 Google Scholar
- 28 Alternative Energy: A Global Survey, Goldman Sachs Global Markets Institute, New York 2007.
- 29
S. Abolhosseini, A. Heshmati, J. Altmann, A Review of Renewable Energy Supply and Energy Efficiency Technologies, IZA Discussion Paper, No. 8145, SSRN, Rochester, NY 2014. DOI: https://doi.org/10.2139/ssrn.2432429
10.2139/ssrn.2432429 Google Scholar
- 30 N. Kannan, D. Vakeesan, Renewable Sustainable Energy Rev. 2016, 62, 1092–1105. DOI: https://doi.org/10.1016/j.rser.2016.05.022
- 31 I. P.-A. Cheong, M. Johari, H. Said, D. F. Treagust, Int. J. Sci. Educ. 2015, 37 (2), 210–236. DOI: https://doi.org/10.1080/09500693.2014.976295
- 32 Renewable Energy and Jobs–Annual Review 2021, International Renewable Energy Agency, Abu Dhabi 2021.
- 33 S. Mekhilef, S. Z. Faramarzi, R. Saidur, Z. Salam, Renewable Sustainable Energy Rev. 2013, 18, 583–594. DOI: https://doi.org/10.1016/j.rser.2012.10.049
- 34 M. Aghaei, S. Damanafshan, M. Imamzai, M. Pourdadash, Y. Md Thayoob, An Overview of Solar Cells Materials Classification in Proc. National Graduate Conference, Academia, San Francisco 2014.
- 35
I. Santiago, D. Trillo Montero, J. J. Luna Rodríguez, I. M. Moreno Garcia, E. J. Palacios Garcia, Energies
2017, 10 (12), 1964. DOI: https://doi.org/10.3390/en10121964
10.3390/en10121964 Google Scholar
- 36 M. Alsabbagh, Energy Rep. 2019, 5, 253–261. DOI: https://doi.org/10.1016/j.egyr.2019.02.002
- 37 D. N. Madsen, J. P. Hansen, Renewable Sustainable Energy Rev. 2019, 114, 109306. DOI: https://doi.org/10.1016/j.rser.2019.109306
- 38 G. Najafi, B. Ghobadian, R. Mamat, T. Yusaf, W. Azmi, Renewable Sustainable Energy Rev. 2015, 49, 931–942. DOI: https://doi.org/10.1016/j.rser.2015.04.056
- 39
A. Jäger-Waldau, PV Status Report 2013, Publications Office, Luxembourg 2013, 55. DOI: https://doi.org/10.2790/93822
10.2790/93822 Google Scholar
- 40 A. Poullikkas, Int. J. Energy Environ. Econ. 2010, 1 (4), 617–634.
- 41 G. Raina, S. Sinha, Energy Strategy Rev. 2019, 24, 331–341. DOI: https://doi.org/10.1016/j.esr.2019.04.005
- 42
V. Kaartemo, Creation and Shaping of the Global Solar Photovoltaic (PV) Market, in Advances in Sustainability and Environmental Justice, Emerald, Bingley 2016, 227–247. DOI: https://doi.org/10.1108/S2051-503020160000019011
10.1108/S2051?503020160000019011 Google Scholar
- 43
J. F. Kirkegaard, T. Hanemann, L. Weischer, M. Miller, Toward a Sunny Future? Global Integration in the Solar PV Industry, Peterson Institute for International Economics Working Paper, NO. 10-6, SSRN, Rochester, NY 2010. DOI: https://doi.org/10.2139/ssrn.1612417
10.2139/ssrn.1612417 Google Scholar
- 44 A. Jäger-Waldau, Energies 2020, 13 (4), 930. DOI: https://doi.org/10.3390/en13040930
- 45 A. Jäger-Waldau, PV Status Report 2019, Publications Office, Luxembourg 2019.
- 46 D. J. Feldman, R. M. Margolis, Q2/Q3 2018 Solar Industry Update, NREL, Golden, CO 2018.
- 47 M. Hosenuzzaman, N. Rahim, J. Selvaraj, M. Hasanuzzaman, A. A. Malek, A. Nahar, Renewable Sustainable Energy Rev. 2015, 41, 284–297. DOI: https://doi.org/10.1016/j.rser.2014.08.046
- 48 B. Parida, S. Iniyan, R. Goic, Renewable Sustainable Energy Rev. 2011, 15 (3), 1625–1636. DOI: https://doi.org/10.1016/j.rser.2010.11.032
- 49 A. Awasthi, A. K. Shukla, M. M. SR, C. Dondariya, K. Shukla, D. Porwal, G. Richhariya, Energy Rep. 2020, 6, 392–405. DOI: https://doi.org/10.1016/j.egyr.2020.02.004
- 50
M. R. Shaikh, S. Shaikh, S. Waghmare, S. Labade, A. Tekale, Int. J. Res. Appl. Sci. Eng. Technol.
2017, 887, 1884–1889. DOI: https://doi.org/10.22214/ijraset.2017.9272
10.22214/ijraset.2017.9272 Google Scholar
- 51 C. D. Mickey, J. Chem. Educ. 1981, 58 (5), 418. DOI: https://doi.org/10.1021/ed058p418
- 52
A. S. Al-Ezzi, M. N. M. Ansari, Appl. Syst. Innovation
2022, 5 (4), 67. DOI: https://doi.org/10.3390/asi5040067
10.3390/asi5040067 Google Scholar
- 53
M. W. Davidson, Microsc. Today
2011, 19 (4), 42–44. DOI: https://doi.org/10.1017/S1551929511000459
10.1017/S1551929511000459 Google Scholar
- 54
K. Ranabhat, L. Patrikeev, A. Antal'evna-Revina, K. Andrianov, V. Lapshinsky, E. Sofronova, J. Appl. Eng. Sci.
2016, 14 (4), 481–491. DOI: https://doi.org/10.5937/jaes14-10879
10.5937/jaes14-10879 Google Scholar
- 55 S. Dubey, N. Y. Jadhav, B. Zakirova, Energy Procedia 2013, 33, 322–334. DOI: https://doi.org/10.1016/j.egypro.2013.05.073
- 56 E. Velilla, J. B. Cano, F. Jaramillo, Sol. Energy 2019, 194, 79–85. DOI: https://doi.org/10.1016/j.solener.2019.10.051
- 57 S. Rajput, SOLAR ENERGY- Fundamentals, Economic and Energy Analysis, Khazar University, Baku 2017.
- 58
H. P. Garg, R. K. Agarwal, Energy Convers.
1995, 36 (2), 87–99. DOI: https://doi.org/10.1016/0196-8904(94)00046-3
10.1016/0196-8904(94)00046-3 Google Scholar
- 59 F. Ahammed, D. A. Taufiq, J. Rural Community Dev. 2008, 3 (1), 93–103.
- 60 M. A. Hannan, S. B. Wali, P. J. Ker, M. S. A. Rahman, M. Mansor, V. K. Ramachandaramurthy, K. M. Muttaqi, T. M. I. Mahlia, Z. Y. Dong, J. Energy. Storage 2021, 42, 103023. DOI: https://doi.org/10.1016/j.est.2021.103023
- 61
K. Ramalingam, C. Indulkar, in Distributed Generation Systems (Eds: G. B. Gharehpetian, S. M. Mousavi Agah), Butterworth-Heinemann, Boston
2017, 69–147.
10.1016/B978-0-12-804208-3.00003-0 Google Scholar
- 62 G. K. Singh, Energy J. 2013, 53, 1–13. DOI: https://doi.org/10.1016/j.energy.2013.02.057
- 63
A. Kumar, D. Gupta, V. Gupta, J. Green Eng.
2017, 7, 213–254. DOI: https://doi.org/10.13052/jge1904-4720.71210
10.13052/jge1904-4720.71210 Google Scholar
- 64 J. T. Kiehl, K. E. Trenberth, Bull. Am. Meteorol. Soc. 1997, 78 (2), 197–208. DOI: https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
- 65 Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, Argonne National Laboratory, Lemont, IL 2005.
- 66 A. Azarpour, S. Suhaimi, G. Zahedi, A. Bahadori, Arab. J. Sci. Eng. 2013, 38 (2), 317–328. DOI: https://doi.org/10.1007/s13369-012-0436-6
- 67 M. Keivani Hafshejani, A. Baheri, M. Ojakeh, A. Sedighpour, A. Arad, S. Choopani, Life Sci. J. 2012, 9 (4), 1849–1853.
- 68 V. M. Fthenakis, Energy Policy 2000, 28 (14), 1051–1058. DOI: https://doi.org/10.1016/S0301-4215(00)00091-4
- 69 R. J. Mustafa, M. R. Gomaa, M. Al-Dhaifallah, Sustainability 2020, 12 (2), 608. DOI: https://doi.org/10.3390/su12020608
- 70 S. A. Kalogirou, Solar energy engineering: processes and systems, Academic Press, San Diego, CA 2013.
- 71 A. Chel, G. Kaushik, Agron. Sustainable Dev. 2011, 31 (1), 91–118. DOI: https://doi.org/10.1051/agro/2010029
- 72 P. G. V. Sampaio, M. O. A. González, Renewable Sustainable Energy Rev. 2017, 74, 590–601. DOI: https://doi.org/10.1016/j.rser.2017.02.081
- 73 H. S. Rauschenbach, Solar cell array design handbook, Springer, Dordrecht 2012.
- 74
R. Wiser, D. Millstein, T. Mai, J. Macknick, A. Carpenter, S. Cohen, W. Cole, B. Frew, G. Heath, Energy J.
2016, 113, 472–486. DOI: https://doi.org/10.1016/j.energy.2016.07.068
10.1016/j.energy.2016.07.068 Google Scholar
- 75 R. Miles, K. Hynes, I. Forbes, Prog. Cryst. Growth Charact. Mater. 2005, 51 (1–3), 1–42. DOI: https://doi.org/10.1016/j.pcrysgrow.2005.10.002
- 76 K. Tennakone, G. Kumara, A. Kumarasinghe, K. Wijayantha, P. Sirimanne, Semicond. Sci. Technol. 1995, 10 (12), 1689. DOI: https://doi.org/10.1088/0268-1242/10/12/020
- 77 M. A. Mahmud, N. Huda, S. Farjana, C. Lang, Energies 2018, 11, 2346. DOI: https://doi.org/10.3390/en11092346
- 78
L. E. Chaar, in Power Electronics Handbook (Ed: M. H. Rashid), Butterworth-Heinemann, Boston
2011, 711–722.
10.1016/B978-0-12-382036-5.00027-6 Google Scholar
- 79 E. Franklin, Types of Solar Photovoltaic Systems, University of Arizona, Tucson, AZ 2017.
- 80 M. Kolhe, J. C. Joshi, D. P. Kothari, IEEE Trans. Energy Convers. 2004, 19 (3), 613–618. DOI: https://doi.org/10.1109/TEC.2004.827032
- 81
E. Quiles, C. Roldán-Blay, G. Escrivá-Escrivá, C. Roldán-Porta, Sustainability
2020, 12 (3), 1274. DOI: https://doi.org/10.3390/su12031274
10.3390/su12031274 Google Scholar
- 82
N. S. S. Mohamed, N. FaezahBintiAbdGhani, N. F. Abd Hamid, J. Phys.: Conf. Ser.
2020, 1432, 012054. DOI: https://doi.org/10.1088/1742-6596/1432/1/012054
10.1088/1742-6596/1432/1/012054 Google Scholar
- 83
K. N. Nwaigwe, P. Mutabilwa, E. Dintwa, Mater. Sci. Technol.
2019, 2 (3), 629–633. DOI: https://doi.org/10.1016/j.mset.2019.07.002
10.1016/j.mset.2019.07.002 Google Scholar
- 84 N. Panda, B. Das, A. Chakrabarti, P. R. Kasari, A. Bhattacharya, D. Chatterjee, IEEE Trans. Ind. Appl. 2021, 57 (1), 869–881. DOI: https://doi.org/10.1109/TIA.2020.3040204
- 85 H. K. V. Lotsch, A. Goetzberger, V. U. Hoffmann, Photovoltaic solar energy generation, Springer, Berlin 2005.
- 86 R. A. Badwawi, M. Abusara, T. Mallick, Smart Sci. 2015, 3 (3), 127–138. DOI: https://doi.org/10.1080/23080477.2015.11665647
- 87 M. Kane, D. Larrain, D. Favrat, Y. Allani, Energy J. 2003, 28 (14), 1427–1443. DOI: https://doi.org/10.1016/S0360-5442(03)00127-0
- 88 S. Sharma, K. K. Jain, A. Sharma, Mater. Sci. Appl. 2015, 6 (12), 1145. DOI: https://doi.org/10.4236/msa.2015.612113
- 89 C. C. Farrell, A. I. Osman, R. Doherty, M. Saad, X. Zhang, A. Murphy, J. Harrison, A. S. M. Vennard, V. Kumaravel, A. H. Al-Muhtaseb, D. W. Rooney, Renewable Sustainable Energy Rev. 2020, 128, 109911. DOI: https://doi.org/10.1016/j.rser.2020.109911
- 90 M. Imtiaz, M. S. Rizwan, M. A. Mushtaq, M. Ashraf, S. M. Shahzad, B. Yousaf, D. A. Saeed, M. Rizwan, M. A. Nawaz, S. Mehmood, S. Tu, J. Environ. Manage. 2016, 183, 521–529. DOI: https://doi.org/10.1016/j.jenvman.2016.09.009
- 91 K.-D. Jäger, O. Isabella, A. H. M. Smets, R. A. C. M. M. v. Swaaij, M. Zeman, Solar energy : fundamentals, technology and systems, UIT Cambridge, Cambridge 2016.
- 92
M. Taraba, J. Adamec, M. Danko, P. Drgona, T. Urica, Transp. Res. Procedia
2019, 40, 535–540. DOI: https://doi.org/10.1016/j.trpro.2019.07.077
10.1016/j.trpro.2019.07.077 Google Scholar
- 93 D. Ginley, M. A. Green, R. Collins, MRS Bull. 2008, 33 (4), 355–364. DOI: https://doi.org/10.1557/mrs2008.71
- 94 F. Akarslan, in Modeling and Optimization of Renewable Energy Systems (Ed: ), IntechOpen, London 2012, 21.
- 95 K. Yasuda, T. H. Okabe, JOM 2010, 62 (12), 94–101. DOI: https://doi.org/10.1007/s11837-010-0190-8
- 96
M. Askari, V. Mirzaei Mahmoud Abadi, M. Mirhabibi, Am. J. Opt. Photonics
2015, 3 (5), 94–113. DOI: https://doi.org/10.11648/j.ajop.20150305.17
10.11648/j.ajop.20150305.17 Google Scholar
- 97 K. Manickam, M. Venkatachalam, D. Manickam, P. Gowthaman, S. Shanmugam, J. Adv. Res. Appl. Sci. 2017, 4, 26–38.
- 98 M. J. Molaei, M. Younas, M. Rezakazemi, ACS Appl. Electron. Mater. 2021, 3 (12), 5165–5187. DOI: https://doi.org/10.1021/acsaelm.1c00720
- 99 M. Yousefi, M. Ghatee, M. Rezakazemi, S. H. Ghaderi, Int. J. Appl. Ceram. Technol. 2021, 18 (6), 2197–2206. DOI: https://doi.org/10.1111/ijac.13828
- 100 M. Gul, Y. Kotak, T. Muneer, Energy Explor. 2016, 34 (4), 485–526. DOI: https://doi.org/10.1177/0144598716650552
- 101 M. J. Molaei, M. Younas, M. Rezakazemi, Mater. Sci. Eng. 2022, 285, 115936. DOI: https://doi.org/10.1016/j.mseb.2022.115936
- 102
R. C. Chittick, H. F. Sterling, in Tetrahedrally-Bonded Amorphous Semiconductors (Eds: D. Adler, H. Fritzsche), Springer, Boston, MA
1985, 1–10.
10.1007/978-1-4899-5361-2_1 Google Scholar
- 103
Z. Usman, J. Tah, H. Abanda, C. Nche, Buildings
2020, 10 (11), 192. DOI: https://doi.org/10.3390/buildings10110192
10.3390/buildings10110192 Google Scholar
- 104 N. S. M. Hussin, N. A. M. Amin, M. J. A. Safar, R. S. Zulkafli, M. A. Rojan, I. Zaman, Performance Factors of the Photovoltaic System: A Review, MATEC Web Conf. 2018, 225, 03020.
- 105 N. S. Lewis, Science 2016, 351 (6271), aad1920. DOI: https://doi.org/10.1126/science.aad1920
- 106 A. M. Ali, K. S. Rahman, L. M. Ali, M. Akhtaruzzaman, K. Sopian, S. Radiman, N. Amin, Results Phys. 2017, 7, 1066–1072. DOI: https://doi.org/10.1016/j.rinp.2017.02.032
- 107
A. M. Curtin, C. A. Vail, H. L. Buckley, Water-Energy Nexus
2020, 3, 15–28. DOI: https://doi.org/10.1016/j.wen.2020.03.007
10.1016/j.wen.2020.03.007 Google Scholar
- 108 K. Zweibel, Science 2010, 328 (5979), 699–701. DOI: https://doi.org/10.1126/science.1189690
- 109
X. Tao, in Wearable Electronics and Photonics (Ed: X. Tao), Woodhead, Sawston, UK
2005, 136-154.
10.1533/9781845690441.136 Google Scholar
- 110 S. Kawakita, M. Imaizumi, T. Sumita, K. Kushiya, T. Ohshima, M. Yamaguchi, S. Matsuda, S. Yoda, T. Kamiya, in Proc. of the 3rd World Conf. on Photovoltaic Energy Conversion, IEEE, Piscataway, NJ 2003.
- 111 T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, A. N. Tiwari, Prog. Photovoltaics 2017, 25 (7), 645–667. DOI: https://doi.org/10.1002/pip.2811
- 112 S. Sun, N. T. P. Hartono, Z. D. Ren, F. Oviedo, A. M. Buscemi, M. Layurova, D. X. Chen, T. Ogunfunmi, J. Thapa, S. Ramasamy, C. Settens, B. L. DeCost, A. G. Kusne, Z. Liu, S. I. P. Tian, I. M. Peters, J.-P. Correa-Baena, T. Buonassisi, Joule 2019, 3 (6), 1437–1451. DOI: https://doi.org/10.1016/j.joule.2019.05.014
- 113
A. Jäger-Waldau, in Practical Handbook of Photovoltaics (Eds: A. McEvoy, T. Markvart, L. Castañer), Academic Press, Boston
2012, 373–395.
10.1016/B978-0-12-385934-1.00011-8 Google Scholar
- 114 P. D. Moskowitz, K. Zweibel, Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes, A Workshop Report, Brookhaven National Laboratory, Upton, NY 1992.
- 115
K. Zeng, D.-J. Xue, J. Tang, Semicond. Sci. Technol.
2016, 31 (6), 063001. DOI: https://doi.org/10.1088/0268-1242/31/6/063001
10.1088/0268-1242/31/6/063001 Google Scholar
- 116 M. L. Parisi, S. Maranghi, R. Basosi, Renewable Sustainable Energy Rev. 2014, 39, 124–138. DOI: https://doi.org/10.1016/j.rser.2014.07.079
- 117 J. Yan, J. Campillo, S. Foster, Global solar photovoltaic industry analysis with focus on the Chinese market, First Int. Conf. on Applied Energy, Hong Kong, January 2009.
- 118 M. Jacoby, C&EN 2016, 94 (18), 30–35.
- 119 P. Huang, S. Xu, M. Zhang, W. Zhong, Z. Xiao, Y. Luo, Opt. Mater. 2020, 110, 110535. DOI: https://doi.org/10.1016/j.optmat.2020.110535
- 120 T. V. Arjunan, T. S. Senthil, Mater. Technol. 2013, 28 (1–2), 9–14. DOI: https://doi.org/10.1179/1753555712Y.0000000040
- 121 A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 2016, 15 (3), 247. DOI: https://doi.org/10.1038/nmat4572
- 122 I. Hod, A. Zaban, Langmuir 2014, 30 (25), 7264–7273. DOI: https://doi.org/10.1021/la403768j
- 123 A. Mbonyiryivuze, I. Omollo, B. D. Ngom, B. Mwakikunga, S. M. Dhlamini, E. Park, M. Maaza, Phys. Mater. Chem. 2015, 3, 1–6. DOI: https://doi.org/10.12691/pmc-3-1-1
- 124 J. Cross, D. Murray, Energy Res. Soc. Sci. 2018, 44, 100–109. DOI: https://doi.org/10.1016/j.erss.2018.04.034
- 125 I. Mora-Seró, Adv. Energy Mater. 2020, 10 (33), 2001774. DOI: https://doi.org/10.1002/aenm.202001774
- 126 M. R. Kim, D. Ma, J. Phys. Chem. Lett. 2015, 6 (1), 85–99. DOI: https://doi.org/10.1021/jz502227h
- 127 K. Sharma, V. Sharma, S. Sharma, Nanoscale Res. Lett. 2018, 13 (1), 381. DOI: https://doi.org/10.1186/s11671-018-2760-6
- 128 A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Prog. Photovoltaics 2004, 12 (2–3), 113–142. DOI: https://doi.org/10.1002/pip.533
- 129 M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, A. W. Ho-Baillie, Prog. Photovoltaics 2019, 27 (7), 565–575. DOI: https://doi.org/10.1002/pip.3171
- 130 M. Hiramoto, M. Kubo, Y. Shinmura, N. Ishiyama, T. Kaji, K. Sakai, T. Ohno, M. Izaki, Electronics 2014, 3 (2), 351–380.
- 131 J. Khan, I. Ullah, J. Yuan, Adv. Mater. 2022, 3 (4), 1931–1952. DOI: https://doi.org/10.1039/D1MA01075A
- 132 P. Roy, N. Kumar Sinha, S. Tiwari, A. Khare, J. Sol. Energy 2020, 198, 665–688. DOI: https://doi.org/10.1016/j.solener.2020.01.080
- 133 H. Liu, M.-H. Yu, C.-C. Lee, X. Yu, Y. Li, Z. Zhu, C.-C. Chueh, Z. a. Li, A. K.-Y. Jen, Adv. Mater. Technol. 2021, 6 (6), 2000960. DOI: https://doi.org/10.1002/admt.202000960
- 134 L. Meng, J. You, Y. Yang, Nat. Commun. 2018, 9, 5265. DOI: https://doi.org/10.1038/s41467-018-07255-1
- 135
S. Irvine, in Springer Handbook of Electronic and Photonic Materials (Eds: S. Kasap, P. Capper), Springer, Cham
2017.
10.1007/978-3-319-48933-9_43 Google Scholar
- 136 E. Buitrago, A. M. Novello, T. Meyer, Helv. Chim. Acta 2020, 103 (9), e2000074. DOI: https://doi.org/10.1002/hlca.202000074
- 137 G. M. Wilson, M. Al-Jassim, W. K. Metzger, S. W. Glunz, P. Verlinden, G. Xiong, L. M. Mansfield, B. J. Stanbery, K. Zhu, Y. Yan, J. J. Berry, A. J. Ptak, F. Dimroth, B. M. Kayes, A. C. Tamboli, R. Peibst, K. Catchpole, M. O. Reese, C. S. Klinga, P. Denholm, M. Morjaria, M. G. Deceglie, J. M. Freeman, M. A. Mikofski, D. C. Jordan, G. TamizhMani, D. B. Sulas-Kern, J. Phys. D: Appl. Phys. 2020, 53 (49), 493001. DOI: https://doi.org/10.1088/1361-6463/ab9c6a
- 138 A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352 (6283), aad4424. DOI: https://doi.org/10.1126/science.aad4424
- 139 J. A. Luceño-Sánchez, A. M. Díez-Pascual, R. Peña Capilla, Int. J. Mol. Sci. 2019, 20 (4), 976. DOI: https://doi.org/10.3390/ijms20040976
- 140
S. S. Liao, Y. C. Lin, C. L. Chuang, E. Y. Chang, Int. J. Photoenergy
2017, 2017, 9503857. DOI: https://doi.org/10.1155/2017/9503857
10.1155/2017/9503857 Google Scholar
- 141 H. Charifi, A. Slaoui, J. P. Stoquert, H. Chaib, A. Hannour, World J. Condens. Matter Phys. 2016, 6 (1), 7–16. DOI: https://doi.org/10.4236/wjcmp.2016.61002
- 142 T. D. Lee, A. U. Ebong, Renewable Sustainable Energy Rev. 2017, 70, 1286–1297. DOI: https://doi.org/10.1016/j.rser.2016.12.028
- 143 H. S. Ullal, Overview and challenges of thin film solar electric technologies, NREL, Golden, CO 2008.
- 144 C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, D. K. Sadana, Nat. Commun. 2013, 4 (1), 1577. DOI: https://doi.org/10.1038/ncomms2583
- 145 N. Papež, R. Dallaev, Ş. Ţălu, J. Kaštyl, Materials 2021, 14 (11), 3075. DOI: https://doi.org/10.3390/ma14113075
- 146 J. Ramanujam, U. P. Singh, Energy Environ. Sci. 2017, 10 (6), 1306–1319. DOI: https://doi.org/10.1039/C7EE00826K
- 147
P. Trihutomo, S. Soeparman, D. Widhiyanuriyawan, L. Yuliati, Int. J. Photoenergy
2019, 2019, 4384728. DOI: https://doi.org/10.1155/2019/4384728
10.1155/2019/4384728 Google Scholar
- 148 U. Mehmood, S.-u. Rahman, K. Harrabi, I. A. Hussein, B. V. S. Reddy, Adv. Mater. Sci. Eng. 2014, 2014, 974782. DOI: https://doi.org/10.1155/2014/974782
- 149
G. F. Alapatt, R. Singh, K. F. Poole, Adv. OptoElectron.
2012, 2012, 782150. DOI: https://doi.org/10.1155/2012/782150
10.1155/2012/782150 Google Scholar
- 150 L. X. Chen, ACS Energy Lett. 2019, 4 (10), 2537–2539. DOI: https://doi.org/10.1021/acsenergylett.9b02071
- 151 S. Almosni, A. Delamarre, Z. Jehl, D. Suchet, L. Cojocaru, M. Giteau, B. Behaghel, A. Julian, C. Ibrahim, L. Tatry, H. Wang, T. Kubo, S. Uchida, H. Segawa, N. Miyashita, R. Tamaki, Y. Shoji, K. Yoshida, N. Ahsan, K. Watanabe, T. Inoue, M. Sugiyama, Y. Nakano, T. Hamamura, T. Toupance, C. Olivier, S. Chambon, L. Vignau, C. Geffroy, E. Cloutet, G. Hadziioannou, N. Cavassilas, P. Rale, A. Cattoni, S. Collin, F. Gibelli, M. Paire, L. Lombez, D. Aureau, M. Bouttemy, A. Etcheberry, Y. Okada, J.-F. Guillemoles, Sci. Technol. Adv. Mater. 2018, 19 (1), 336–369. DOI: https://doi.org/10.1080/14686996.2018.1433439
- 152 D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, J. Nanomater. 2018, 2018, 8148072. DOI: https://doi.org/10.1155/2018/8148072
- 153 C. G. Poll, G. W. Nelson, D. M. Pickup, A. V. Chadwick, D. J. Riley, D. J. Payne, Green Chem. 2016, 18 (10), 2946–2955. DOI: https://doi.org/10.1039/C5GC02734A
- 154 K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, M. S. Islam, Energy Sci. Eng. 2021, 10 (2), 656–675. DOI: https://doi.org/10.1002/ese3.1043
- 155 Y. N. Chanchangi, A. Ghosh, S. Sundaram, T. K. Mallick, J. Sol. Energy 2020, 203, 46–68. DOI: https://doi.org/10.1016/j.solener.2020.03.089
- 156
M. Catelani, L. Ciani, L. Cristaldi, M. Faifer, M. Lazzaroni, M. Rossi, in 2012 IEEE Int. Instrumentation and Measurement Technology Conf. Proc., IEEE, Piscataway, NJ 2012. DOI: https://doi.org/10.1109/I2MTC.2012.6229505
10.1109/I2MTC.2012.6229505 Google Scholar
- 157 M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, S. Hajighorbani, Renewable Sustainable Energy Rev. 2016, 59, 1307–1316. DOI: https://doi.org/10.1016/j.rser.2016.01.044
- 158 J. Tanesab, D. Parlevliet, J. Whale, T. Urmee, T. Pryor, J. Sol. Energy 2015, 120, 147–157. DOI: https://doi.org/10.1016/j.solener.2015.06.052
- 159
S. A. Sulaiman, A. K. Singh, M. M. M. Mokhtar, M. A. Bou-Rabee, Energy Procedia
2014, 50, 50–56. DOI: https://doi.org/10.1016/j.egypro.2014.06.006
10.1016/j.egypro.2014.06.006 Google Scholar
- 160 H. A. Kazem, M. T. Chaichan, Int. J. Appl. Eng. 2015, 10 (23), 43572–43577.
- 161
G. He, C. Zhou, Z. Li, Procedia Eng.
2011, 16, 640–645. DOI: https://doi.org/10.1016/j.proeng.2011.08.1135
10.1016/j.proeng.2011.08.1135 Google Scholar
- 162
A. Hussain, A. Batra, R. Pachauri, Renewables Wind Water Sol.
2017, 4 (1), 9. DOI: https://doi.org/10.1186/s40807-017-0043-y
10.1186/s40807-017-0043-y Google Scholar
- 163 A. Mäki, S. Valkealahti, IEEE Trans. Energy Convers. 2012, 27 (1), 173–183. DOI: https://doi.org/10.1109/TEC.2011.2175928
- 164
R. Ramabadran, B. Mathur, Mod. Appl. Sci.
2009, 3 (10), 32–41. DOI: https://doi.org/10.5539/mas.v3n10p32
10.5539/mas.v3n10p32 Google Scholar
- 165 R. G. Vieira, F. M. de Araújo, M. Dhimish, M. I. Guerra, Energies 2020, 13 (10), 2472. DOI: https://doi.org/10.3390/en13102472
- 166 P. Sathyanarayana, R. Ballal, P. L. Sagar, G. Kumar, Energy Power 2015, 5 (1A), 1–4.
- 167 M. Ma, Z. Zhang, P. Yun, Z. Xie, H. Wang, W. Ma, IEEE J. Photovoltaics 2021, 11 (3), 779–788. DOI: https://doi.org/10.1109/JPHOTOV.2021.3059425
- 168
A. Chaudhary, D. Chaturvedi, Int. J. Image Graphics Signal Process.
2018, 10, 10–21. DOI: https://doi.org/10.5815/ijigsp.2018.06.02
10.5815/ijigsp.2018.06.02 Google Scholar
- 169 F. A. Touati, M. A. Al-Hitmi, H. J. Bouchech, Int. J. Green Energy 2013, 10 (7), 680–689. DOI: https://doi.org/10.1080/15435075.2012.692134
- 170 H. S. Rauschenbach, Solar Cell Array Design Handbook, California Institute of Technology, Pasadena 1976.
- 171
A. Amelia, Y. Irwan, W. Leow, M. Irwanto, I. Safwati, M. Zhafarina, Int. J. Adv. Sci. Eng. Information Technol.
2016, 6 (5), 682–688.
10.18517/ijaseit.6.5.938 Google Scholar
- 172 M. R. Tur, I. Colak, R. Bayindir, in Proc. of the 2018 Int. Conf. on Smart Grid (icSmartGrid), IEEE, Piscataway, NJ 2018.
- 173 E. B. Ettah, A. B. Udoimuk, J. Obiefuna, F. E. Opara, Univers. J. Manage. Soc. Sci. 2012, 2, 8–11.
- 174 P. J. Sánchez-Illescas, P. Carpena, P. Bernaola-Galván, M. Sidrach-de-Cardona, A. V. Coronado, J. L. Álvarez, Sol. Energy Mater Sol. Cells 2008, 92 (3), 323–331. DOI: https://doi.org/10.1016/j.solmat.2007.09.008
- 175 W. D. Lubitz, Appl. Energy 2011, 88 (5), 1710–1719. DOI: https://doi.org/10.1016/j.apenergy.2010.11.008
- 176 H. Z. Al Garni, A. Awasthi, D. Wright, Renewable Energy 2019, 133, 538–550. DOI: https://doi.org/10.1016/j.renene.2018.10.048
- 177 T. Tsoutsos, N. Frantzeskaki, V. Gekas, Energy Policy 2005, 33 (3), 289–296. DOI: https://doi.org/10.1016/S0301-4215(03)00241-6
- 178 M. Aman, K. Solangi, M. Hossain, A. Badarudin, G. Jasmon, H. Mokhlis, A. Bakar, S. N. Kazi, Renewable Sustainable Energy Rev. 2015, 41, 1190–1204. DOI: https://doi.org/10.1016/j.rser.2014.08.086
- 179
H.-J. Yang, S.-Y. Lim, S.-H. Yoo, Sustainability
2017, 9 (10), 1773. DOI: https://doi.org/10.3390/su9101773
10.3390/su9101773 Google Scholar
- 180 D. Turney, V. Fthenakis, Renewable Sustainable Energy Rev. 2011, 15 (6), 3261–3270. DOI: https://doi.org/10.1016/j.rser.2011.04.023
- 181 M. Tawalbeh, A. Al-Othman, F. Kafiah, E. Abdelsalam, F. Almomani, M. Alkasrawi, Sci. Total Environ. 2021, 759, 143528. DOI: https://doi.org/10.1016/j.scitotenv.2020.143528
- 182 R. Y. Chock, B. Clucas, E. K. Peterson, B. F. Blackwell, D. T. Blumstein, K. Church, E. Fernández-Juricic, G. Francescoli, A. L. Greggor, P. Kemp, G. M. Pinho, P. M. Sanzenbacher, B. A. Schulte, P. Toni, Conserv. Sci. Pract. 2021, 3 (2), e319. DOI: https://doi.org/10.1111/csp2.319
- 183 I. Celik, Z. Song, M. Heben, Y. Yan, D. Apul, 2016 IEEE 43rd Photovoltaic Specialists Conf. (PVSC), IEEE, Piscataway, NJ 2016.
- 184 J. Bohland, T. Dapkus, K. Kamm, K. Smigielski, in Proc. of the Second IEEE World Photovoltaic Specialists Conf., IEEE, Piscataway, NJ 1998, 716–719.
- 185 K.-H. Kim, E. Kabir, S. Kabir, Environ. Int. 2015, 74, 136–143. DOI: https://doi.org/10.1016/j.envint.2014.10.005
- 186 A. Rabl, J. V. Spadaro, Annu. Rev. Energy Environ. 2000, 25, 601–627. DOI: https://doi.org/10.1146/annurev.energy.25.1.601
- 187 K. Siler-Evans, I. L. Azevedo, M. G. Morgan, J. Apt, PNAS 2013, 110 (29), 11768–11773. DOI: https://doi.org/10.1073/pnas.1221978110
- 188 J. Walzberg, A. Carpenter, G. A. Heath, Nat. Energy 2021, 6 (9), 913–924. DOI: https://doi.org/10.1038/s41560-021-00888-5
- 189 Solar Panels and Their Impact on the Environment, Saskatchewan Environmental Society, Saskatchewan 2017.
- 190 P. Moskowitz, V. Fthenakis, K. Zweibel, Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems, Solar Energy Research Inst., Golden, CO 1990.
- 191 V. Fthenakis, P. Moskowitz, Prog. Photovoltaics 2000, 8 (1), 27–38. DOI: https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<27::AID-PIP296>3.0.CO;2-8
- 192 V. Fthenakis, 29th IEEE Photovoltaic Specialists Conf., New Orleans, May 2002.
- 193
S. Abalansa, B. El Mahrad, J. Icely, A. Newton, Sustainability
2021, 13 (9), 5302. DOI: https://doi.org/10.3390/su13095302
10.3390/su13095302 Google Scholar
- 194 M. A. Aguado-Monsonet, The environmental impact of photovoltaic technology, Institute for Prospective Technological Studies, Sevilla 1998.
- 195
V. M. Fthenakis, in McEvoy's Handbook of Photovoltaics, 3rd Edition (Ed: S. A. Kalogirou), Academic Press, San Diego, CA
2018, 1195-1212.
10.1016/B978-0-12-809921-6.00035-5 Google Scholar
- 196 J. Moss, A. Coram, G. Blashki, Solar energy in Australia: Health and environmental costs and benefits, The Australia Institute, Manuka 2014.
- 197
S. Yari, A. F. Asadi, M. Nourmohammadi, Asian Pac. J. Environ. Cancer
2018, 1 (1), 5–13. DOI: https://doi.org/10.31557/APJEC.2018.1.1.5-13
10.31557/apjec.2018.1.1.5-13 Google Scholar
- 198 J. E. Kolby, Nature 2014, 509 (7502), 563–563. DOI: https://doi.org/10.1038/509563a
- 199 E. Klugmann-Radziemska, Ecol. Chem. Eng. S 2023, 30 (1), 23–35. DOI: https://doi.org/10.2478/eces-2023-0002
- 200 W. D. Cyrs, H. J. Avens, Z. A. Capshaw, R. A. Kingsbury, J. Sahmel, B. E. Tvermoes, Energy Policy 2014, 68, 524–533. DOI: https://doi.org/10.1016/j.enpol.2014.01.025
- 201 D. A. Eisenberg, M. Yu, C. W. Lam, O. A. Ogunseitan, J. M. Schoenung, J. Hazard. Mater. 2013, 260, 534–542. DOI: https://doi.org/10.1016/j.jhazmat.2013.06.007
- 202 G. F. Nordberg, A. Bernard, G. L. Diamond, J. H. Duffus, P. Illing, M. Nordberg, I. A. Bergdahl, T. Jin, S. Skerfving, Pure Appl. Chem. 2018, 90 (4), 755–808. DOI: https://doi.org/10.1515/pac-2016-0910
- 203 V. M. Fthenakis, P. Moskowitz, Prog. Photovoltaics 1995, 3 (5), 295–306. DOI: https://doi.org/10.1002/pip.4670030504
- 204 V. M. Fthenakis, Renewable Sustainable Energy Rev. 2004, 8 (4), 303–334. DOI: https://doi.org/10.1016/j.rser.2003.12.001
- 205
K. H. Ong, R. Agileswari, B. Maniscalco, P. Arnou, C. C. Kumar, J. W. Bowers, M. B. Marsadek, Int. J. Photoenergy
2018, 2018, 9106269. DOI: https://doi.org/10.1155/2018/9106269
10.1155/2018/9106269 Google Scholar
- 206
V. M. Fthenakis, A. O. Bulawka, in Encyclopedia of Energy (Ed: C. J. Cleveland), Elsevier, Amsterdam
2004, 61–69.
10.1016/B0-12-176480-X/00421-6 Google Scholar
- 207 V. V. Tyagi, N. A. A. Rahim, N. A. Rahim, J. A. L. Selvaraj, Renewable Sustainable Energy Rev. 2013, 20, 443–461. DOI: https://doi.org/10.1016/j.rser.2012.09.028
- 208 R. D. McConnell, Renewable Sustainable Energy Rev. 2002, 6 (3), 271–293. DOI: https://doi.org/10.1016/S1364-0321(01)00012-0
- 209 Y. G. Yoo, J. Park, H. N. Umh, S. Y. Lee, S. Bae, Y. H. Kim, S. E. Jerng, Y. Kim, J. Yi, J. Ind. Eng. Chem. 2019, 70, 453–461. DOI: https://doi.org/10.1016/j.jiec.2018.11.008
- 210 J. Briffa, E. Sinagra, R. Blundell, Heliyon 2020, 6 (9), e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691
- 211 B. Bakhiyi, F. Labrèche, J. Zayed, Environ. Int. 2014, 73, 224–234. DOI: https://doi.org/10.1016/j.envint.2014.07.023
- 212 C. F. Blanco, S. Cucurachi, F. Dimroth, J. B. Guinée, W. J. G. M. Peijnenburg, M. G. Vijver, Energy Environ. Sci. 2020, 13 (11), 4280–4290. DOI: https://doi.org/10.1039/D0EE01039A
- 213 H. J. T. Nkuissi, F. K. Konan, B. Hartiti, J.-M. Ndjaka, in Reliability and Ecological Aspects of Photovoltaic Modules, IntechOpen, London 2020.
- 214 M. Sheoran, P. Kumar, S. Sharma, in Mechatronic Systems Design and Solid Materials, Apple Academic Press, New York 2021, 165–185.
- 215 M. Ren, X. Qian, Y. Chen, T. Wang, Y. Zhao, J. Hazard. Mater. 2022, 426, 127848. DOI: https://doi.org/10.1016/j.jhazmat.2021.127848
- 216 Z. Shi, A. H. Jayatissa, Materials 2018, 11 (5), 729.
- 217 M. Rafati-Rahimzadeh, M. Rafati-Rahimzadeh, S. Kazemi, A. Moghadamnia, Caspian J. Intern. Med. 2017, 8 (3), 135–145. DOI: https://doi.org/10.22088/cjim.8.3.135
- 218 G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci, A. Catalano, Int. J. Environ. Res. Public Health 2020, 17 (11), 3782.
- 219 H. Zhang, Z. Yu, C. Zhu, R. Yang, B. Yan, G. Jiang, Environ. Pollut. 2023, 320, 121066. DOI: https://doi.org/10.1016/j.envpol.2023.121066
- 220
K. Rathi, B. Vyas, P. Acharya, J. Vyas, A. Dixit, Mater. Today Proc.
2022, 69, 519–523. DOI: https://doi.org/10.1016/j.matpr.2022.09.259
10.1016/j.matpr.2022.09.259 Google Scholar
- 221 Y. Zhang, B. Xi, W. Tan, Environ. Int. 2021, 157, 106780. DOI: https://doi.org/10.1016/j.envint.2021.106780
- 222
A. M. Henderson, IEEE Electr. Insul. Mag.
1993, 9 (1), 30–38. DOI: https://doi.org/10.1109/57.249923
10.1109/57.249923 Google Scholar
- 223
S. K. Venkatachary, R. Samikannu, S. Murugesan, N. R. Dasari, R. U. Subramaniyam, Environ. Technol. Innovation
2020, 20, 101130. DOI: https://doi.org/10.1016/j.eti.2020.101130
10.1016/j.eti.2020.101130 Google Scholar
- 224 J. Park, W.-C. Kim, N. Cho, H. Lee, N. Park, Green Chem. 2016, 18, 1706–1714. DOI: https://doi.org/10.1039/C5GC01819F
- 225 Y. Xu, J. Li, Q. Tan, A. L. Peters, C. Yang, Waste Manage. 2018, 75, 450–458. DOI: https://doi.org/10.1016/j.wasman.2018.01.036
- 226 A. O. Domínguez, R. Geyer, Resour. Conserv. Recycl. 2017, 127, 29–41. DOI: https://doi.org/10.1016/j.resconrec.2017.08.013
- 227 H. F. Yu, M. Hasanuzzaman, N. A. Rahim, N. Amin, N. Nor Adzman, Sustainable Sci. 2022, 14 (14), 8567.
- 228 A. Norgren, A. C. Carpenter, G. A. Heath, J. Sustainable Metall. 2020, 6, 761–774. DOI: https://doi.org/10.1007/s40831-020-00313-3
- 229 X. Li, H. Liu, J. You, H. Diao, L. Zhao, W. Wang, Waste Manage. 2022, 137, 312–318. DOI: https://doi.org/10.1016/j.wasman.2021.11.024
- 230 R. Deng, N. L. Chang, Z. P. Ouyang, C. M. Chong, Renewable Sustainable Energy Rev. 2019, 109, 532–550. DOI: https://doi.org/10.1016/j.rser.2019.04.020
- 231 E. Klugmann-Radziemska, P. Ostrowski, Renewable Energy 2010, 35, 1751–1759. DOI: https://doi.org/10.1016/j.renene.2009.11.031
- 232 J. A. Tsanakas, A. van der Heide, T. Radavičius, J. Denafas, E. Lemaire, K. Wang, J. Poortmans, E. Voroshazi, Prog. Photovoltaics 2020, 28 (6), 454–464. DOI: https://doi.org/10.1002/pip.3193
- 233 C. Farrell, A. Osman, J. Harrison, A. Vennard, A. Murphy, R. Doherty, M. Russell, V. Kumaravel, A. H. Al-Muhtaseb, X. Zhang, J. Abu-Dahrieh, D. Rooney, Ind. Eng. Chem. Res. 2021, 60 (37), 13492–13504. DOI: https://doi.org/10.1021/acs.iecr.1c01989
- 234 C. Eberspacher, C. F. Gay, P. D. Moskowitz, Sol. Energy Mater. Sol. Cells 1996, 41–42, 637–653. DOI: https://doi.org/10.1016/0927-0248(95)00120-4
- 235 Z. Zhang, S. Guo, Q. Li, F. Cui, A. A. Malcolm, Z. Su, M. Liu, Compos. Sci. Technol. 2020, 189, 108016. DOI: https://doi.org/10.1016/j.compscitech.2020.108016
- 236 J. Tao, S. Yu, Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. DOI: https://doi.org/10.1016/j.solmat.2015.05.005
- 237 W. Berger, F.-G. Simon, K. Weimann, E. A. Alsema, Resour. Conserv. Recycl. 2010, 54 (10), 711–718. DOI: https://doi.org/10.1016/j.resconrec.2009.12.001
- 238 E. Klugmann-Radziemska, P. Ostrowski, Renewable Energy 2010, 35 (8), 1751–1759. DOI: https://doi.org/10.1016/j.renene.2009.11.031
- 239 T. Doi, I. Tsuda, H. Unagida, A. Murata, K. Sakuta, K. Kurokawa, Sol. Energy Mater. Sol. Cells 2001, 67 (1), 397–403. DOI: https://doi.org/10.1016/S0927-0248(00)00308-1
- 240 R. Deng, N. L. Chang, Z. Ouyang, C. M. Chong, Renewable Sustainable Energy Rev.. 2019, 109, 532–550. DOI: https://doi.org/10.1016/j.rser.2019.04.020
- 241 D. Strachala, J. Hylský, K. Jandova, J. Vaněk, Š. Cingel, ECS Trans. 2017, 81 (1), 199. DOI: https://doi.org/10.1149/08101.0199ecst
- 242 C. C. Faircloth, K. H. Wagner, K. E. Woodward, P. Rakkwamsuk, S. H. Gheewala, Resour. Conserv. Recycl. 2019, 143, 260–272. DOI: https://doi.org/10.1016/j.resconrec.2019.01.008
- 243
A. Müller, K. Wambach, E. A. Alsema, MRS Online Proc. Libr.
2005, 895, 307. DOI: https://doi.org/10.1557/PROC-0895-G03-07
10.1557/PROC-0895-G03-07 Google Scholar
- 244 F. Cucchiella, I. D'Adamo, P. Rosa, Renewable Sustainable Energy Rev. 2015, 47, 552–561. DOI: https://doi.org/10.1016/j.rser.2015.03.076
- 245
M. K. H. Rabaia, C. Semeraro, A.-G. Olabi, J. Cleaner Prod.
2022, 373, 133864. DOI: https://doi.org/10.1016/j.jclepro.2022.133864
10.1016/j.jclepro.2022.133864 Google Scholar
- 246 L. Marina Monteiro, A.-G. Juan Pablo, I. B. José, C. Richard, in Solar Panels and Photovoltaic Materials (Ed: Z. Beddiaf), IntechOpen, London 2018, Ch. 2.
- 247 K. H. Yu, Y. Zhang, D. Li, C. E. Montenegro-Marin, P. M. Kumar, Environ. Impact Assess. Rev. 2021, 86, 106492. DOI: https://doi.org/10.1016/j.eiar.2020.106492
- 248 D. Ravikumar, P. Sinha, T. P. Seager, M. P. Fraser, Prog. Photovoltaics 2016, 24 (5), 735–746. DOI: https://doi.org/10.1002/pip.2711
- 249 D. Ravikumar, T. Seager, P. Sinha, M. P. Fraser, S. Reed, E. Harmon, A. Power, Prog. Photovoltaics 2020, 28 (9), 887–898. DOI: https://doi.org/10.1002/pip.3279
- 250
H. Yu, X. Tong, Resour. Conserv. Recycl.
2021, 169, 105484. DOI: https://doi.org/10.1016/j.resconrec.2021.105484
10.1016/j.resconrec.2021.105484 Google Scholar
- 251 N. C. McDonald, J. M. Pearce, Energy Policy 2010, 38 (11), 7041–7047. DOI: https://doi.org/10.1016/j.enpol.2010.07.023
- 252 I. Celik, M. Lunardi, A. Frederickson, R. Corkish, Appl. Sci. 2020, 10 (16), 5465. DOI: https://doi.org/10.3390/app10165465
- 253 F. Cucchiella, I. D'Adamo, P. Rosa, Renewable Sustainable Energy Rev. 2015, 47, 552–561. DOI: https://doi.org/10.1016/j.rser.2015.03.076
- 254 J. R. Pérez-Gallardo, C. Azzaro-Pantel, S. Astier, Waste Biomass Valorization 2018, 9, 147–159. DOI: https://doi.org/10.1007/s12649-017-9878-0
- 255 C. Sener, V. Fthenakis, Renewable Sustainable Energy Rev. 2014, 32, 854–868. DOI: https://doi.org/10.1016/j.rser.2014.01.030
- 256 K. K. Zander, G. Simpson, S. Mathew, R. Nepal, S. T. Garnett, J. Cleaner Prod. 2019, 230, 328–338. DOI: https://doi.org/10.1016/j.jclepro.2019.05.133