Removal of Heavy Metals from Industrial Wastewaters: A Review
Arezoo Azimi
Persian Gulf University, Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, 7516913817 Bushehr, Iran
Search for more papers by this authorCorresponding Author
Ahmad Azari
Persian Gulf University, Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, 7516913817 Bushehr, Iran
Correspondence: Ahmad Azari ([email protected]), Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr 7516913817, Iran.Search for more papers by this authorMashallah Rezakazemi
Shahrood University of Technology, Department of Chemical Engineering, 3619995161 Shahrood, Iran
Search for more papers by this authorMeisam Ansarpour
Persian Gulf University, Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, 7516913817 Bushehr, Iran
Search for more papers by this authorArezoo Azimi
Persian Gulf University, Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, 7516913817 Bushehr, Iran
Search for more papers by this authorCorresponding Author
Ahmad Azari
Persian Gulf University, Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, 7516913817 Bushehr, Iran
Correspondence: Ahmad Azari ([email protected]), Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr 7516913817, Iran.Search for more papers by this authorMashallah Rezakazemi
Shahrood University of Technology, Department of Chemical Engineering, 3619995161 Shahrood, Iran
Search for more papers by this authorMeisam Ansarpour
Persian Gulf University, Department of Chemical Engineering, Faculty of Oil, Gas and Petrochemical Engineering, 7516913817 Bushehr, Iran
Search for more papers by this authorAbstract
Heavy metals like arsenic, copper, cadmium, chromium, nickel, zinc, lead, and mercury are major pollutants of fresh water reservoirs because of their toxic, non-biodegradable, and persistent nature. The industrial growth is the major source of heavy metals introducing such pollutants into different segments of the environment including air, water, soil, and biosphere. Heavy metals are easily absorbed by fishes and vegetables due to their high solubility in the aquatic environments. Hence, they may accumulate in the human body by means of the food chain. Various methods have been developed and used for water and wastewater treatment to decrease heavy metal concentrations. These technologies include membrane filtration, ion-exchange, adsorption, chemical precipitation, nanotechnology treatments, electrochemical and advanced oxidation processes. In this review, the methods as well as their mechanisms and efficiency are discussed.
References
- 1 S. Malat et al., Catal. Today 2009, 147 (1), 1–59.
- 2 G.-D. Kang, Y.-M. Cao, Water Res. 2012, 46 (3), 584–600.
- 3 A. Mukherjee et al., ChemBioEng Rev. 2016, 3 (2), 86–96.
- 4 M. N. Chong et al., Water Res. 2010, 44 (10), 2997–3027.
- 5 V. K. Gupta, I. Ali, in Environmental Water (Ed: V. K. G. Ali), Elsevier, Amsterdam 2013, Ch. 1.
- 6 U. Ipek, Desalination 2005, 174 (2), 161–169.
- 7 N. Adhoum et al., J. Hazard. Mater. 2004, 112 (3), 207–213.
- 8 M. Hunsom et al., Water Res. 2005, 39 (4), 610–616.
- 9
V. K. Gupta, I. Ali, Environmental Water (Ed: V. K. G. Ali), Elsevier, Amsterdam
2013, Ch. 2, 29–91.
10.1016/B978-0-444-59399-3.00002-7 Google Scholar
- 10 D. Brusick, Toxicol. Ind. Health 1993, 9 (1–2), 223.
- 11 B. Merzouk et al., Desalination 2011, 275 (1), 181–186.
- 12 J. Grimm, D. Bessarabov, R. Sanderson, Desalination 1998, 115 (3), 285–294.
- 13 J. De Zuane, Handbook of Drinking Water Quality: Standards and Controls, Van Nostrand Reinhold, New York 1990.
- 14 T. A. Kurniawan et al., Chem. Eng. J. 2006, 118 (1), 83–98.
- 15 F. Fu, Q. Wang, J. Environ. Manage. 2011, 92 (3), 407–418.
- 16 N. Oyaro et al., J. Food, Agric. Environ. 2007, 5 (3&4), 119–121.
- 17 C. Borba et al., Biochem. Eng. J. 2006, 30 (2), 184–191.
- 18 H. Lee, W. Choi, Environ. Sci. Technol. 2002, 36 (17), 3872–3878.
- 19 L. M. Fry, J. R. Mihelcic, D. W. Watkins, Environ. Sci. Technol. 2008, 42 (12), 4298–4304.
- 20 M. A. Montgomery, M. Elimelech, Environ. Sci. Technol. 2007, 41 (1), 17–24.
- 21 J. Hahladakis et al., Environ. Monit. Assess. 2013, 185 (3), 2843–2853.
- 22 V. Diagomanolin et al., Toxicol. Lett. 2004, 151 (1), 63–67.
- 23Table of Regulated Drinking Water Contaminants, Environmental Protection Agency (EPA), Washington 1980. www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants
- 24 M. Barakat, Arab. J. Chem. 2011, 4 (4), 361–377.
- 25 D. Dionisi, ChemBioEng Rev. 2014, 1 (2), 67–82.
- 26 P. K. Holt, G. W. Barton, C. A. Mitchell, Chemosphere 2005, 59 (3), 355–367.
- 27
V. K. Gupta, I. Ali, in Environmental Water (Ed: V. K. G. Ali), Elsevier, Amsterdam
2013, Ch. 6, 155–178.
10.1016/B978-0-444-59399-3.00006-4 Google Scholar
- 28 V. Khandegar, A. K. Saroha, J. Environ. Manage. 2013, 128, 949–963.
- 29 M. M. Emamjomeh, M. Sivakumar, J. Environ. Manage. 2009, 90 (5), 1663–1679.
- 30 J. A. Gomes et al., J. Hazard. Mater. 2007, 139 (2), 220–231.
- 31 M. Y. Mollah et al., J. Hazard. Mater. 2001, 84 (1), 29–41.
- 32 M. Y. Mollah et al., J. Hazard. Mater. 2004, 114 (1), 199–210.
- 33 Ö. Hanay, H. Hasar, J. Hazard. Mater. 2011, 189 (1), 572–576.
- 34 A. Shafaei, M. Rezaie, M. Nikazar, Chem. Eng. Process. 2011, 50 (11), 1115–1121.
- 35 S. Vasudevan, J. Lakshmi, Sep. Purif. Technol. 2011, 80 (3), 643–651.
- 36 S. Vasudevan, J. Lakshmi, G. Sozhan, Desalination 2011, 275 (1), 260–268.
- 37 M. Kobya et al., J. Hazard. Mater. 2010, 173 (1), 326–334.
- 38 P. Ganesan et al., Can. J. Chem. Eng. 2013, 91 (3), 448–458.
- 39 H. J. Mansoorian, A. H. Mahvi, A. J. Jafari, Sep. Purif. Technol. 2014, 135, 165–175.
- 40 S. Aber, A. Amani-Ghadim, V. Mirzajani, J. Hazard. Mater. 2009, 171 (1), 484–490.
- 41 N. Adhoum et al., J. Hazard. Mater. 2004, 112 (3), 207–213.
- 42 B. Al Aji, Y. Yavuz, A. S. Koparal, Sep. Purif. Technol. 2012, 86, 248–254.
- 43 F. Akbal, S. Camcı, Desalination 2011, 269 (1), 214–222.
- 44 M. Al-Shannag et al., Chem. Eng. J. 2015, 260, 749–756.
- 45 M. S. Bhatti, A. S. Reddy, A. K. Thukral, J. Hazard. Mater. 2009, 172 (2), 839–846.
- 46 A. de Mello Ferreira, M. Marchesiello, P.-X. Thivel, Sep. Purif. Technol. 2013, 107, 109–117.
- 47 D. Ghosh, H. Solanki, M. Purkait, J. Hazard. Mater. 2008, 155 (1), 135–143.
- 48 A. Golder, A. Samanta, S. Ray, J. Hazard. Mater. 2007, 141 (3), 653–661.
- 49 S. S. Hamdan, M. H. El-Naas, J. Ind. Eng. Chem. 2014, 20 (5), 2775–2781.
- 50 I. Heidmann, W. Calmano, Sep. Purif. Technol. 2010, 71 (3), 308–314.
- 51 Z. Li, X. Zhang, L. Lei, Process Biochem. 2008, 43 (12), 1352–1358.
- 52 T. Ölmez, J. Hazard. Mater. 2009, 162 (2), 1371–1378.
- 53 V. Kolesnikov et al., Russ. J. Heavy Machinery 1996, 1068–3720, 37–38.
- 54 B. Merzouk et al., J. Hazard. Mater. 2009, 164 (1), 215–222.
- 55 V. Srinivasan, M. Subbaiyan, Sep. Sci. Technol. 1989, 24 (1–2), 145–150.
- 56 G. Ramadorai, J. Hanten, Miner. Metall. Process. 1986, 149–154.
- 57 V. Zeletsov, K. Kiselev, Sov. Surf. Eng. Appl. Electrochem. 1986, 4, 70–76.
- 58 V. Nenno et al., Surf. Eng. Appl. Electrochem. 1994, 1068–3755, 50–50.
- 59 S. Oussedik, A. Khelifa, Desalination 2001, 139 (1), 383.
- 60 L. Alexandrova, T. Nedialkova, I. Nishkov, Int. J. Miner. Process. 1994, 41 (3), 285–294.
- 61 R. Casqueira, M. Torem, H. Kohler, Miner. Eng. 2006, 19 (13), 1388–1392.
- 62 P. Gao et al., Sep. Purif. Technol. 2005, 43 (2), 117–123.
- 63 I. d. O. da Mota et al., J. Mater. Res. Technol. 2015, 4 (2), 109–113.
- 64 F. Elmore, Brit. Pat. 1905, 13.
- 65 V. Nenno et al., Surf. Eng. Appl. Electrochem. 1988, 6, 677–79.
- 66 P. Hogan, A. Kuhn, J. Turner, Trans. Inst. Min. Metall. C 1979, 88.
- 67 S. Zodi et al., Sep. Purif. Technol. 2009, 69 (1), 29–36.
- 68 A. Y. Hosny, Sep. Technol. 1996, 6 (1), 9–17.
- 69 M. Ibrahim et al., Sep. Sci. Technol. 2001, 36 (16), 3749–3762.
- 70 C. Ho, C. Chan, Water Res. 1986, 20 (12), 1523–1527.
- 71 L. Balmer, A. Foulds, Filtr. Sep. 1986, 23 (6), 366–370.
- 72 A. Hosny, Filtr. Sep. 1992, 29 (5), 419–423.
- 73 N. M. Mostefa, M. Tir, Desalination 2004, 161 (2), 115–121.
- 74 C. P. Poon, J. Hazard. Mater. 1997, 55 (1), 159–170.
- 75 B. Hernlem, L. S. Tsai, J. Food Sci. 2000, 65 (5), 834–837.
- 76 M. Araya-Farias et al., Innovative Food Sci. Emerging Technol. 2008, 9 (3), 320–327.
- 77 T. Kubritskaya et al., Surf. Eng. Appl. Electrochem. 2000, 6, 62–68.
- 78 Y. Fukui, S. Yuu, AIChE J. 1985, 31 (2), 201–208.
- 79 C. Manohar, V. Kelkar, J. Yakhmi, J. Colloid Interface Sci. 1982, 89 (1), 54–60.
- 80 E. Sandbank, G. Shelef, A. Wachs, Water Res. 1974, 8 (9), 587–592.
- 81 V. Il'in, V. Kolesnikov, Y. I. Parshina, Glass Ceram. 2002, 59 (7–8), 242–244.
- 82 P. Costaz, J. Miquel, M. Reinbold, Water Res. 1983, 17 (3), 255–262.
- 83 G. Chen, Sep. Purif. Technol. 2004, 38 (1), 11–41.
- 84 C. Smith, Prog. Water Technol. 1972, 1, 1325–334.
- 85 A. Khelifa, S. Moulay, A. Naceur, Desalination 2005, 181 (1), 27–33.
- 86 J. Rubio, F. Tessele, Miner. Eng. 1997, 10 (7), 671–679.
- 87 C. Blöcher et al., Water Res. 2003, 37 (16), 4018–4026.
- 88 F. M. Doyle, Z. Liu, J. Colloid Interface Sci. 2003, 258 (2), 396–403.
- 89 N. Lazaridis, K. Matis, M. Webb, Chemosphere 2001, 42 (4), 373–378.
- 90 V. Mavrov et al., Desalination 2003, 157 (1), 97–104.
- 91 D. Zamboulis et al., Desalination 2004, 162, 159–168.
- 92 A. Zouboulis et al., Miner. Eng. 2003, 16 (11), 1231–1236.
- 93 K. A. Matis et al., Chemosphere 2004, 55 (1), 65–72.
- 94 Y. Oztekin, Z. Yazicigil, Desalination 2006, 190 (1–3), 79–88.
- 95 K. Scott, E. M. Paton, Electrochim. Acta 1993, 38 (15), 2181–2189.
- 96 J. P. Chen, L. L. Lim, Chemosphere 2005, 60 (10), 1384–1392.
- 97 I. C. Agarwal et al., Water Res. 1984, 18 (2), 227–232.
- 98
D. Sobha Jayakrishnan, in Corrosion Protection and Control Using Nanomaterials (Eds: V. S. Saji, R. Cook), Woodhead Publishing, Cambridge
2012, Ch. 5, 86–125.
10.1533/9780857095800.1.86 Google Scholar
- 99 A. S. Koparal et al., Sep. Purif. Technol. 2004, 37 (2), 107–116.
- 100 J.-H. Chang et al., Sep. Purif. Technol. 2009, 68 (2), 216–221.
- 101 W. Simka, D. Puszczyk, G. Nawrat, Electrochim. Acta 2009, 54 (23), 5307–5319.
- 102 D. R. Wulan, H. R. Hariyadi, Proc. Chem. 2015, 16, 155–163.
- 103 I. Beauchesne et al., J. Environ. Eng. 2014, 140 (8), 04014030.
- 104 Y. Ku, I.-L. Jung, Water Res. 2001, 35 (1), 135–142.
- 105 K. Jüttner, U. Galla, H. Schmieder, Electrochim. Acta 2000, 45 (15), 2575–2594.
- 106 T. Maruyama, S. A. Hannah, J. M. Cohen, J. - Water Pollut. Control Fed. 1975, 0043–1303, 962–975.
- 107 A. Özverdi, M. Erdem, J. Hazard. Mater. 2006, 137 (1), 626–632.
- 108
L. K. Wang et al., in Physicochemical Treatment Processes, Springer, Heidelberg
2005, 141–197.
10.1385/1-59259-820-x:141 Google Scholar
- 109 O. Tünay, Water Sci. Technol. 2004, 48 (11–12), 43–52.
- 110 Q. Chen et al., Water Res. 2009, 43 (10), 2605–2614.
- 111 I. Tadesse et al., Bioresour. Technol. 2006, 97 (4), 529–534.
- 112 K. Baltpurvins et al., Water Res. 1997, 31 (5), 973–980.
- 113 L. Charerntanyarak, Water Sci. Technol. 1999, 39 (10), 135–138.
- 114 U. Wingenfelder et al., Environ. Sci. Technol. 2005, 39 (12), 4606–4613.
- 115 P. Bose, M. A. Bose, S. Kumar, Adv. Environ. Res. 2002, 7 (1), 179–195.
- 116 X. Yang, A. Fane, S. MacNaughton, Water Sci. Technol. 2001, 43 (2), 341–348.
- 117 S. L. Ferreira et al., Talanta 1999, 48 (5), 1173–1177.
- 118 S.-Y. Kang et al., Chemosphere 2004, 56 (2), 141–147.
- 119 F. Gode, E. Pehlivan, J. Hazard. Mater. 2006, 136 (2), 330–337.
- 120
S. Vigneswaran et al., in Physicochemical Treatment Processes, Springer, Heidelberg
2005, 635–676.
10.1385/1-59259-820-x:635 Google Scholar
- 121 S. Rengaraj, K.-H. Yeon, S.-H. Moon, J. Hazard. Mater. 2001, 87 (1), 273–287.
- 122 A. Dabrowski et al., Chemosphere 2004, 56 (2), 91–106.
- 123 F. Gode, E. Pehlivan, J. Hazard. Mater. 2003, 100 (1), 231–243.
- 124 G. Tiravanti, D. Petruzzelli, R. Passino, Water Sci. Technol. 1997, 36 (2), 197–207.
- 125 G. P. Miller, D. I. Norman, P. L. Frisch, Water Res. 2000, 34 (4), 1397–1400.
- 126 S. Lacour et al., Anal. Chim. Acta 2001, 428 (1), 121–132.
- 127 S. H. Lin, S. L. Lai, H. G. Leu, J. Hazard. Mater. 2000, 76 (1), 139–153.
- 128 S. Chiarle, M. Ratto, M. Rovatti, Water Res. 2000, 34 (11), 2971–2978.
- 129 B. Alyüz, S. Veli, J. Hazard. Mater. 2009, 167 (1), 482–488.
- 130 S. Lin, C. Kiang, Chem. Eng. J. 2003, 92 (1), 193–199.
- 131T. Kurniawan, S. Babel. Second Int. Conf. on Energy Technology towards a Clean Environment (RCETE), Phuket, February 2003.
- 132 W. Tsai et al., Bioresour. Technol. 2001, 78 (2), 203–208.
- 133 J. i. Hayashi et al., Microporous Mesoporous Mater. 2002, 55 (1), 63–68.
- 134 K. Okada et al., J. Colloid Interface Sci. 2003, 262 (1), 179–193.
- 135 S. Abdel-Halim, A. Shehata, M. El-Shahat, Water Res. 2003, 37 (7), 1678–1683.
- 136 G. McKay, J. F. Porter, J. Chem. Technol. Biotechnol. 1997, 69 (3), 309–320.
- 137 K. Kadirvelu, C. Namasivayam, Environ. Technol. 2000, 21 (10), 1091–1097.
- 138 S. Erdoğan et al., Appl. Surf. Sci. 2005, 252 (5), 1324–1331.
- 139 S. Iijima, Nature 1991, 354 (6348), 56–58.
- 140 N. A. Kabbashi et al., J. Environ. Sci. 2009, 21 (4), 539–544.
- 141 C.-Y. Kuo, H.-Y. Lin, Desalination 2009, 249 (2), 792–796.
- 142 M. I. Kandah, J.-L. Meunier, J. Hazard. Mater. 2007, 146 (1–2), 283–288.
- 143 K. Pillay, E. Cukrowska, N. Coville, J. Hazard. Mater. 2009, 166 (2), 1067–1075.
- 144 Y. Li et al., J. Hazard. Mater. 2010, 177 (1), 876–880.
- 145 M. Šćiban et al., Bioresour. Technol. 2007, 98 (2), 402–409.
- 146 B. Yu et al., J. Hazard. Mater. 2000, 80 (1), 33–42.
- 147 S. Recillas et al., J. Hazard. Mater. 2010, 184 (1), 425–431.
- 148 F.-S. Zhang, J. O. Nriagu, H. Itoh, Water Res. 2005, 39 (2), 389–395.
- 149 C. Chen et al., J. Hazard. Mater. 2009, 164 (2), 923–928.
- 150 J. Hu et al., J. Hazard. Mater. 2009, 162 (2), 1542–1550.
- 151 S. Shirazian et al., Desalination 2012, 286, 290–295.
- 152 M. Rezakazemi, K. Shahidi, T. Mohammadi, Desalin. Water Treat. 2015, 54 (6), 1542–1549.
- 153 S. Shirazian, A. Marjani, M. Rezakazemi, Eng. Comput. 2012, 28 (2), 189–198.
- 154 M. Rezakazemi, T. Mohammadi, Int. J. Hydrogen Energy 2013, 38 (32), 14035–14041.
- 155 M. Rezakazemi, K. Shahidi, T. Mohammadi, Int. J. Hydrogen Energy 2012, 37 (19), 14576–14589.
- 156 M. Rezakazemi, K. Shahidi, T. Mohammadi, Int. J. Hydrogen Energy 2012, 37 (22), 17275–17284.
- 157 M. Rostamizadeh et al., Int. J. Hydrogen Energy 2013, 38 (2), 1128–1135.
- 158 M. Rezakazemi et al., J. Membr. Sci. 2011, 379 (1–2), 224–232.
- 159 M. Rezakazemi, A. Vatani, T. Mohammadi, J. Natural Gas Sci. Eng. 2016, 30, 10–18.
- 160 M. Fasihi et al., Math. Comput. Modell. 2012, 56 (11–12), 278–286.
- 161 F. Hashemi, S. Rowshanzamir, M. Rezakazemi, Math. Comput. Modell. 2012, 55 (3–4), 1540–1557.
- 162 A. Marjani, M. Rezakazemi, S. Shirazian, Orient. J. Chem. 2011, 27 (4), 1331–1335.
- 163 A. Marjani, M. Rezakazemi, S. Shirazian, Orient. J. Chem. 2012, 28, 145–151.
- 164 E. Farno et al., Polym. Eng. Sci. 2014, 54 (1), 215–226.
- 165 M. Rezakazemi et al., Polym. Eng. Sci. 2013, 53 (6), 1272–1278.
- 166 M. Shahverdi et al., Polym. Eng. Sci. 2013, 53 (7), 1487–1493.
- 167 M. Rezakazemi et al., Polym. Eng. Sci. 2013, 53 (7), 1494–1501.
- 168 M. Rezakazemi et al., Prog. Polym. Sci. 2014, 39 (5), 817–861.
- 169 M. Rezakazemi, A. Vatani, T. Mohammadi, RSC Adv. 2015, 5 (100), 82460–82470.
- 170 S. Shirazian et al., Asia-Pac. J. Chem. Eng. 2012, 7 (6), 828–834.
- 171 M. Rezakazemi, A. Marjani, S. Shirazian, Chem. Eng. Technol. 2013, 36 (3), 483–491.
- 172 S. Shirazian et al., Chem. Eng. Technol. 2012, 35 (6), 1077–1084.
- 173 B. Baheri et al., Chem. Eng. Commun. 2015, 202 (3), 316–321.
- 174 M. Rezakazemi et al., Chem. Eng. J. 2011, 168 (3), 1217–1226.
- 175 M. Rezakazemi et al., Chem. Eng. J. 2011, 168 (1), 60–67.
- 176 M. Rezakazemi, S. Shirazian, S. N. Ashrafizadeh, Desalination 2012, 285, 383–392.
- 177 M. Padaki et al., Desalination 2015, 357, 197–207.
- 178 Z. Murthy, L. B. Chaudhari, Chem. Eng. J. 2009, 150 (1), 181–187.
- 179 S. M. R. Razavi et al., Chem. Eng. Process. 2016, 108, 27–34.
- 180 K. Sutherland, Filtr. Sep. 2008, 45 (8), 32–35.
- 181 B. Van der Bruggen, C. Vandecasteele, Environ. Pollut. 2003, 122 (3), 435–445.
- 182 C.-V. Gherasim, P. Mikulášek, Desalination 2014, 343, 67–74.
- 183
R. Singh, in Membrane Technology and Engineering for Water Purification, 2nd ed., Butterworth-Heinemann, Oxford
2015, Ch. 3, 179–281.
10.1016/B978-0-444-63362-0.00003-3 Google Scholar
- 184
A. G. Fane, C. Y. Tang, R. Wang, in Treatise on Water Science (Ed: P. Wilderer), Elsevier, Amsterdam
2011, 301–335.
10.1016/B978-0-444-53199-5.00091-9 Google Scholar
- 185
I. Koyuncu et al., in Advances in Membrane Technologies for Water Treatment (Eds: A. Basile, A. C. K. Rastogi), Woodhead Publishing, Cambridge
2015, 83–128.
10.1016/B978-1-78242-121-4.00003-4 Google Scholar
- 186
D. Purkayastha, U. Mishra, S. Biswas, J. Water Process Eng.
2014, 2, 105–128.
10.1016/j.jwpe.2014.05.009 Google Scholar
- 187 A. Mohammad et al., Desalination 2015, 356, 226–254.
- 188 J. Luo, Y. Wan, J. Membr. Sci. 2013, 438, 18–28.
- 189 B. Al-Rashdi, D. Johnson, N. Hilal, Desalination 2013, 315, 2–17.
- 190 N. Hilal et al., Desalination 2004, 170 (3), 281–308.
- 191 L. M. Ortega et al., Desalination 2008, 227 (1), 204–216.
- 192 A. Okhovat, S. M. Mousavi, Appl. Soft Comput. 2012, 12 (2), 793–799.
- 193 A. Maher, M. Sadeghi, A. Moheb, Desalination 2014, 352, 166–173.
- 194 L. Y. Ng, A. W. Mohammad, C. Y. Ng, Adv. Colloid Interface Sci. 2013, 197, 85–107.
- 195
R. Singh, in Membrane Technology and Engineering for Water Purification, 2nd ed., Butterworth-Heinemann, Oxford
2015, 1–80.
10.1016/B978-0-444-63362-0.00001-X Google Scholar
- 196 L. Malaeb, G. M. Ayoub, Desalination 2011, 267 (1), 1–8.
- 197 M. Kumar, S. Adham, J. DeCarolis, Desalination 2007, 214 (1–3), 138–149.
- 198 A. Subramani, J. G. Jacangelo, Sep. Purif. Technol. 2014, 122, 472–489.
- 199 A. Bódalo-Santoyo et al., Desalination 2003, 155 (2), 101–108.
- 200 P. Gagliardo et al., Desalination 1998, 117 (1–3), 73–78.
- 201 L. F. Greenlee et al., Water Res. 2009, 43 (9), 2317–2348.
- 202 S. S. Shenvi, A. M. Isloor, A. Ismail, Desalination 2015, 368, 10–26.
- 203 S. H. Joo, B. Tansel, J. Environ. Manage. 2015, 150, 322–335.
- 204 S. Malamis et al., J. Hazard. Mater. 2012, 209, 1–8.
- 205 L. B. Chaudhari, Z. Murthy, J. Hazard. Mater. 2010, 180 (1), 309–315.
- 206 H. Ozaki, K. Sharma, W. Saktaywin, Desalination 2002, 144 (1), 287–294.
- 207
A. Cassano, A. Basile, in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (Eds: A. Basile, S. P. Nunes), Woodhead Publishing, Cambridge
2011, 647–679.
10.1533/9780857093790.5.647 Google Scholar
- 208 X. Shi et al., J. Water Process Eng. 2014, 1, 121–138.
- 209 M. Montaña et al., J. Environ. Radioact. 2013, 125, 86–92.
- 210 S. M. Doke, G. D. Yadav, Chem. Eng. J. 2014, 255, 483–491.
- 211 E. Katsou, S. Malamis, K. J. Haralambous, Chemosphere 2011, 82 (4), 557–564.
- 212 G. Borbély, E. Nagy, Desalination 2009, 240 (1), 218–226.
- 213 S.-H. Moon, S.-H. Yun, Curr. Opin. Chem. Eng. 2014, 4, 425–31.
- 214
M. Fidaleo, M. Moresi, in Advances in Food and Nutrition Research (Ed: L. T. Steve), Academic Press, London
2006, 265–360.
10.1016/S1043-4526(06)51005-8 Google Scholar
- 215 T. Z. Sadyrbaeva, Chem. Eng. Process. 2016, 99, (0255–2701), 183–191.
- 216
P. Arribas et al., in Advances in Membrane Technologies for Water Treatment (Eds: A. Basile, A. C. K. Rastogi), Woodhead Publishing, Cambridge
2015, 287–325.
10.1016/B978-1-78242-121-4.00009-5 Google Scholar
- 217 S. Mulyati et al., J. Membr. Sci. 2013, 431, 113–120.
- 218 B. Batchelder, Bull. – Fed. Int. Laiterie (Belgium) 1987, 212.
- 219
L. H. Shaffer, M. S. Mintz, in Principles of Desalination (Ed: K. S. Spiegler), Academic Press, London
1966, 199–289.
10.1016/B978-0-12-395660-6.50011-2 Google Scholar
- 220 F. Valero, R. Arbós, Desalination 2010, 253 (1), 170–174.
- 221 W. Choi, Catal. Surv. Asia 2006, 10 (1), 16–28.
- 222 M. I. Litter, in Advances in Chemical Engineering (Eds: I. D. L. Hugo, R. Benito Serrano), Academic Press, London 2009, 37–67.
- 223 M. I. Litter, Appl. Catal., B 1999, 23 (2–3), 89–114.
- 224 J.-M. Herrmann, Catal. Today 1999, 53 (1), 115–129.
- 225 J.-M. Herrmann, C. Guillard, P. Pichat, Catal. Today 1993, 17 (1–2), 7–20.
- 226 B. Ohtani, J. Photochem. Photobiol., C 2010, 11 (4), 157–178.
- 227
R. Molinari, P. Argurio, C. Lavorato, in Membrane Reactors for Energy Applications and Basic Chemical Production (Eds: A. Basile, L. D. P. L. Hai, V. Piemonte), Woodhead Publishing, Cambridge
2015, 605–639.
10.1016/B978-1-78242-223-5.00020-0 Google Scholar
- 228
P. K. J. Robertson, J. Clean. Prod.
1996, 4 (3–4), 203–212.
10.1016/S0959-6526(96)00044-3 Google Scholar
- 229 S. Gazi, R. Ananthakrishnan, Appl. Catal., B 2011, 105 (3), 317–325.
- 230 L. Jiang, Y. Wang, C. Feng, Proc. Eng. 2012, 45, 993–997.
- 231 M. N. Chong et al., Water Res. 2010, 44 (10), 2997–3027.
- 232 M. R. Hoffmann et al., Chem. Rev. 1995, 95 (1), 69–96.
- 233 M. Cho et al., Water Res. 2004, 38 (4), 1069–1077.
- 234 K. Sunada et al., Environ. Sci. Technol. 1998, 32 (5), 726–728.
- 235 J. C. Ireland et al., Appl. Environ. Microbiol. 1993, 59 (5), 1668–1670.
- 236 H. Al-Ekabi, D. Ollis, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam 1993.
- 237 M. Fujihira, Y. Satoh, T. Osa, Nature 1981 293, 206–208.
- 238 K. Amoa, J. Chem. Educ. 2007, 84 (12), 1948.
- 239 Z.-P. Yan, L. Lin, S. Liu, Energy Fuels 2009, 23 (8), 3853–3858.
- 240 L. Khalil, M. Rophael, W. Mourad, Appl. Catal., B 2002, 36 (2), 125–130.
- 241 S. G. Botta et al., J. Photochem. Photobiol. A 1999, 129 (1), 89–99.
- 242 S. Kim, W. Choi, Environ. Sci. Technol. 2002, 36 (9), 2019–2025.
- 243
C. B. Mendive, D. W. Bahnemann, in Encyclopedia of Materials: Science and Technology (Eds: K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, P. Veyssière), 2nd ed., Elsevier, Amsterdam
2011, 1–5.
10.1016/B978-0-08-043152-9.02273-9 Google Scholar
- 244 G. Hidaka, T. Nakamura, A. Ishizaka, Photochem, Photobiol. 1992, 66, 36.
- 245 H.-F. Jin et al., Chin. J. Appl. Chem. 2001, 18 (8), 639–641.
- 246 J.-M. Herrmann, Top. Catal. 2005, 34 (1–4), 49–65.
- 247 A. Fujishima, K. Honda, Nature 1972, 238 (5385), 37–38.
- 248 S. F. Chin, S. C. Pang, F. E. I. Dom, Mater. Lett. 2011, 65 (17), 2673–2675.
- 249 A. Mills et al., J. Photochem. Photobiol. A 2002, 151 (1), 171–179.
- 250
A. R. Khataee, M. Fathinia, in New and Future Developments in Catalysis (Ed: S. L. Suib), Elsevier, Amsterdam
2013, 267–288.
10.1016/B978-0-444-53874-1.00011-1 Google Scholar
- 251 R. Molinari, A. Caruso, T. Poerio, Catal. Today 2009, 144 (1), 81–86.
- 252 M. Ni et al., Renewable Sustainable Energy Rev. 2007, 11 (3), 401–425.
- 253
M. Keidar, I. I. Beilis, in Plasma Engineering (Eds: M. Keidar, I. I. Beilis), Academic Press, London
2013, 287–357.
10.1016/B978-0-12-385977-8.00006-8 Google Scholar
- 254 V. Nogueira et al., Aquat. Toxicol. 2015, 165, 172–178.
- 255 Y. Liu et al., Powder Technol. 2014, 255, 149–156.
- 256 R. K. Gautam, A. Jaiswal, M. C. Chattopadhyaya, Advanced Materials for Agriculture, Food, and Environmental Safety, Advanced Material Series, John Wiley & Sons, Hoboken 2014, Ch. 11.
- 257 W.-W. Tang et al., Sci. Total Environ. 2014, 468, 1014–1027.
- 258 E. Serrano, G. Rus, J. Garcia-Martinez, Renewable Sustainable Energy Rev. 2009, 13 (9), 2373–2384.
- 259 M. Baalousha et al., in Frontiers of Nanoscience (Ed: R. L. Jamie, V.-J. Eugenia), Elsevier, Amsterdam 2014, 1–54.
- 260
N. Sozer, J. L. Kokini, in Chemical Analysis of Food: Techniques and Applications (Ed: Y. Picó), Academic Press, London
2012, 145–176.
10.1016/B978-0-12-384862-8.00006-6 Google Scholar
- 261 X. Qu, P. J. Alvarez, Q. Li, Water Res. 2013, 47 (12), 3931–3946.
- 262 M. Diallo et al., Nanotech. Appl. Clean Water 2009, 585–587.
- 263 T. E. Cloete, Nanotechnology in Water Treatment Applications, Horizon Scientific Press, Poole 2010.
- 264 M. Hotze, G. Lowry, in Sustainable Water (Eds: R. E. Hester, R. M. Harrison), RSC Publishing, Cambridge 2010.
- 265
S. Kar, P. K. Tewari, in Nanotechnology in Eco-Efficient Construction (Eds: F. Pacheco-Torgal et al.), Woodhead Publishing, Cambridge
2013, 364–427.
10.1533/9780857098832.3.364 Google Scholar
- 266 M. Hua et al., J. Hazard. Mater. 2012, 211, 317–331.
- 267 G. Z. Kyzas, K. A. Matis, J. Mol. Liq. 2015, 203, 159–168.
- 268
A. P. Ingle et al., in Microbial Biodegradation and Bioremediation (Ed: S. Das), Elsevier, Amsterdam
2014, 233–250.
10.1016/B978-0-12-800021-2.00009-1 Google Scholar
- 269 K. D. Grieger et al., J. Contam. Hydrol. 2010, 118 (3–4), 165–183.
- 270 H. Zeng, S. Sun, Adv. Funct. Mater. 2008, 18 (3), 391–400.
- 271 P. I. Girginova et al., J. Colloid Interface Sci. 2010, 345 (2), 234–240.
- 272 S. Singh, K. C. Barick, D. Bahadur, J. Hazard. Mater. 2011, 192 (3), 1539–1547.
- 273 R. Hao et al., Adv. Mater. 2010, 22 (25), 2729–2742.
- 274 L. H. Reddy et al., Chem. Rev. 2012, 112 (11), 5818–5878.
- 275 R. G. Digigow et al., J. Magn. Magn. Mater. 2014, 362, 72–79.
- 276
L. Carlos et al., Applications of magnetite nanoparticles for heavy metal removal from wastewater, INTECH Open Access Publisher, Rijeka
2013.
10.5772/54608 Google Scholar
- 277 J. Hu, G. Chen, I. M. Lo, J. Environ. Eng. 2006, 132 (7), 709–715.
- 278 J. Hu, I. M. Lo, G. Chen, Sep. Purif. Technol. 2007, 56 (3), 249–256.
- 279 J. Song, H. Kong, J. Jang, J. Colloid Interface Sci. 2011, 359 (2), 505–511.
- 280 W. Yantasee et al., Environ. Sci. Technol. 2007, 41 (14), 5114–5119.
- 281 J.-F. Liu, Z.-S. Zhao, G.-B. Jiang, Environ. Sci. Technol. 2008, 42 (18), 6949–6954.
- 282 A. Badruddoza et al., J. Hazard. Mater. 2011, 185 (2), 1177–1186.
- 283 I. Y. Goon et al., Langmuir 2010, 26 (14), 12247–12252.
- 284 C.-M. Chou, H.-L. Lien, J. Nanopart. Res. 2011, 13 (5), 2099–2107.
- 285 J. Wang et al., J. Colloid Interface Sci. 2010, 349 (1), 293–299.
- 286 M. R. Shishehbore, A. Afkhami, H. Bagheri, Chem. Cent. J. 2011, 5 (1), 1.
- 287 M. Zhang et al., Environ. Pollut. 2011, 159 (12), 3509–3514.
- 288 B. An, Q. Liang, D. Zhao, Water Res. 2011, 45 (5), 1961–1972.