Role of Facilitated Transport Membranes and Composite Membranes for Efficient CO2 Capture – A Review
Sikander Rafiq
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.
Department of Chemical Engineering, COMSATS Institute of Information Technology, 1.5 km Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.
Search for more papers by this authorLiyuan Deng
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.
Search for more papers by this authorCorresponding Author
May-Britt Hägg
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.Search for more papers by this authorSikander Rafiq
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.
Department of Chemical Engineering, COMSATS Institute of Information Technology, 1.5 km Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.
Search for more papers by this authorLiyuan Deng
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.
Search for more papers by this authorCorresponding Author
May-Britt Hägg
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.
Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Faculty of Natural Sciences and Technology, 7491 Trondheim, Norway.Search for more papers by this authorAbstract
CO2 emission from anthropogenic sources has raised global environmental concerns, and efficient reduction of these greenhouse gas emissions by capturing CO2 is recognized world-wide as very important along with the implementation of new green energy technology. Membrane technology is considered to be one of the efficient techniques to be used for CO2 capture. Among different types of membranes, mixed matrix membranes and facilitated transport membranes have gained much interest in recent years due to documented high CO2 permeance through these membranes, especially when the gas is humid as is the case for flue gas from combustion. In the current review, a comprehensive discussion is focused on the development of hybrid membranes involving the selection of the fixed site carrier (FSC) membranes and the interaction of nanosilica-particles in a polymer membrane for efficient CO2 capture. Other facilitated transport membranes and mixed matrix membranes are also briefly discussed.
References
- 1 S.-L. Wee, C.-T. Tye, S. Bhatia, Sep. Purif. Technol. 2008, 63, 500–516.
- 2 T.-J. Kim, H. Vrålstad, M. Sandru, M.-B. Hägg, J. Membr. Sci. 2013, 428, 218–224.
- 3 J. D. Wind, D. R. Paul, W. J. Koros, J. Membr. Sci. 2004, 228, 227–236.
- 4 C. A. Scholes, S. E. Kentish, G. W. Stevens, Recent Pat. Chem. Eng. 2008, 1, 52–66.
- 5 E. Tzimas, A. Georgakaki, Energy Policy 2010, 38, 4252–4264.
- 6 B. Freeman, Y. Yampolskii, Membrane Gas Separation, John Wiley & Sons, Hoboken 2011.
- 7 W. J. Koros, R. Mahajan, J. Membr. Sci. 2000, 175, 181–196.
- 8 B. Van der Bruggen, J. Appl. Polym. Sci. 2009, 114, 630–642.
- 9 Z. Wang, T. Chen, J. Xu, Macromolecules 2000, 33, 5672–5679.
- 10
I. Pinnau, in Encyclopedia of Separation Science (Eds: I. D. Wilson), Academic Press, London 2000.
10.1016/B0-12-226770-2/05241-8 Google Scholar
- 11 H. Strathmann, in Synthetic Membranes and Their Preparation (Eds: H. K. L. P. M. Bungay), D. Reidel, Dordrecht 1986.
- 12 T.-S. Chung, X. Hu, J. Appl. Polym. Sci. 1997, 66, 1067–1077.
- 13 M. Wang, X. Zhu, L. Zhang, J. Appl. Polym. Sci. 2000, 75, 267–274.
- 14 A. F. Ismail, W. Lorna, Sep. Purif. Technol. 2002, 27, 173–194.
- 15 L. M. Robeson, J. Membr. Sci. 1991, 62, 165–185.
- 16 L. M. Robeson, J. Membr. Sci. 2008, 320, 390–400.
- 17 J. M. S. Henis, M. K. Tripodi, J. Membr. Sci. 1981, 8, 233–246.
- 18 P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. 2009, 48, 4638–4663.
- 19 C. M. Spadaccini, E. V. Mukerjee, S. A. Letts, A. Maiti, K. C. O'Brien, Energy Procedia 2011, 4, 731–736.
- 20 V. Nafisi, M.-B. Hägg, ACS Appl. Mater. Interfaces 2014, 6, 15643–15652.
- 21 C. J. Cornelius, E. Marand, J. Membr. Sci. 2002, 202, 97–118.
- 22 S. Kim, E. Marand, Microporous Mesoporous Mater. 2008, 114, 129–136.
- 23 Y. Hirayama, Y. Kase, N. Tanihara, Y. Sumiyama, Y. Kusuki, K. Haraya, J. Membr. Sci. 1999, 160, 87–99.
- 24 H. Lin, B. D. Freeman, J. Mol. Struct. 2005, 739, 57–74.
- 25 J. Potreck, K. Nijmeijer, T. Kosinski, M. Wessling, J. Membr. Sci. 2009, 338, 11–16.
- 26 T. C. Merkel, H. Lin, X. Wei, R. Baker, J. Membr. Sci. 2010, 359, 126–139.
- 27 T. C. Merkel, M. Zhou, R. W. Baker, J. Membr. Sci. 2012, 389, 441–450.
- 28 L. M. Robeson, Curr. Opin. Solid State Mater. Sci. 1999, 4, 549–552.
- 29 J. Liao, Z. Wang, C. Gao, S. Li, Z. Qiao, M. Wang, S. Zhao, X. Xie, J. Wang, S. Wang, Chem. Sci. 2014, 5, 2843–2849.
- 30 T.-J. Kim, B. Li, M.-B. Hägg, J. Polym. Sci., Part B 2004, 42, 4326–4336.
- 31
WSW Ho, K. Sirkar, in Membrane Handbook, Van Nostrand Reinhold, New York 1992.
10.1007/978-1-4615-3548-5_46 Google Scholar
- 32
M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht 1996.
10.1007/978-94-009-1766-8 Google Scholar
- 33 J. S. Chiou, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci. 1985, 30, 2633–2642.
- 34 J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Ind. Eng. Chem. Res. 2002, 41, 6139–6148.
- 35 H. Matsuyama, M. Teramoto, K. Iwai, J. Membr. Sci. 1994, 93, 237–244.
- 36 H. Matsuyama, K. Matsui, Y. Kitamura, T. Maki, M. Teramoto, Sep. Purif. Technol. 1999, 17, 235–241.
- 37 H. Matsuyama, M. Teramoto, H. Sakakura, K. Iwai, J. Membr. Sci. 1996, 117, 251–260.
- 38 M. Yoshikawa, T. Ezaki, K. Sanui, N. Ogata, J. Appl. Polym. Sci. 1988, 35, 145–154.
- 39 H. Matsuyama, K. Hirai, M. Teramoto, J. Membr. Sci. 1994, 92, 257–265.
- 40 H. Matsuyama, M. Teramoto, H. Sakakura, J. Membr. Sci. 1996, 114, 193–200.
- 41 T. Yamaguchi, L. M. Boetje, C. A. Koval, R. D. Noble, C. N. Bowman, Ind. Eng. Chem. Res. 1995, 34, 4071–4077.
- 42 D. Grainger, M.-B. Hägg, Fuel 2008, 87, 14–24.
- 43 A. Hussain, M.-B. Hägg, J. Membr. Sci. 2010, 359, 140–148.
- 44 A. Brunetti, F. Scura, G. Barbieri, E. Drioli, J. Membr. Sci. 2010, 359, 115–125.
- 45 J. A. Lie, T. Vassbotn, M.-B. Hägg, D. Grainger, T.-J. Kim, T. Mejdell, Int. J. Greenhouse Gas Control 2007, 1, 309–317.
- 46 Y. S. Kang, J. H. Kim, J. Won, H. S. Kim, in Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Hoboken 2006.
- 47 H. Bai, W. S. W. Ho, Ind. Eng. Chem. Res. 2008, 48, 2344–2354.
- 48 M. B. Haegg, T. J. Kim, B. Li, WO2005089907 A1 2005.
- 49 Y. Zhang, Z. Wang, S. Wang, J. Appl. Polym. Sci. 2002, 86, 2222–2226.
- 50 Y. Zhang, Z. Wang, S. C. Wang, Desalination 2002, 145, 385–388.
- 51 Z. Wang, C. Yi, Y. Zhang, J. Wang, S. Wang, J. Appl. Polym. Sci. 2006, 100, 275–282.
- 52 Z. Wang, M. Li, Y. Cai, J. Wang, S. Wang, J. Membr. Sci. 2007, 290, 250–258.
- 53 H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, M. Teramoto, J. Membr. Sci. 1999, 163, 221–227.
- 54 S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, M. Goto, J. Membr. Sci. 2008, 314, 1–4.
- 55 C. Myers, H. Pennline, D. Luebke, J. Ilconich, J. K. Dixon, E. J. Maginn, J. F. Brennecke, J. Membr. Sci. 2008, 322, 28–31.
- 56 J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, Chem. Eur. J. 2006, 12, 4021–4026.
- 57 B. F. Goodrich, J. C. de la Fuente, B. E. Gurkan, Z. K. Lopez, E. A. Price, Y. Huang, J. F. Brennecke, J. Phys. Chem. B 2011, 115, 9140–9150.
- 58 C. A. Koval, T. Spontarelli, P. Thoen, R. D. Noble, Ind. Eng. Chem. Res. 1992, 31, 1116–1122.
- 59 J. Pellegrino, D. Wang, R. Rabago, R. Noble, C. Koval, J. Membr. Sci. 1993, 84, 161–169.
- 60 C. Dong, Z. Wang, C. Yi, S. Wang, J. Appl. Polym. Sci. 2006, 101, 1885–1891.
- 61 Y. Cai, Z. Wang, C. Yi, Y. Bai, J. Wang, S. Wang, J. Membr. Sci. 2008, 310, 184–196.
- 62 H. E. Alfadala, G. V. R. Reklaitis, M. M. El-Halwagi, Proc. of the 1st Annual Gas Processing Symp., Elsevier Science, Amsterdam 2008.
- 63 L. Deng, M.-B. Hägg, J. Membr. Sci. 2010, 363, 295–301.
- 64 X. He, T.-J. Kim, M.-B. Hägg, J. Membr. Sci. 2014, 470, 266–274.
- 65 L. Deng, M.-B. Hägg, Ind. Eng. Chem. Res. 2015, 54, 11139–11150.
- 66 L. Deng, T.-J. Kim, M.-B. Hägg, J. Membr. Sci. 2009, 340, 154–163.
- 67 M. Sandru, T.-J. Kim, M.-B. Hägg, Desalination 2009, 240, 298–300.
- 68 T.-J. Kim, M. W. Uddin, M. Sandru, M.-B. Hägg, Energy Procedia 2011, 4, 737–744.
- 69 M. Sandru, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim 2009.
- 70 H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, J. Membr. Sci. 2014, 465, 78–90.
- 71 T.-J. Kim, H. Vrålstad, M. Sandru, M.-B. Hägg, Energy Procedia 2013, 37, 986–992.
- 72 X. Chen, Y. Wang, R. Pelton, Langmuir 2005, 21, 11673–11677.
- 73 X. He, T.-J. Kim, M.-B. Hägg, J. Membr. Sci. 2014, 470, 266–274.
- 74 X. He, M. B. Hägg, Procedia Eng. 2012, 44, 118–119.
- 75 A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, Sep. Purif. Technol. 1998, 14, 27–39.
- 76 C. Staudt-Bickel, W. J. Koros, J. Membr. Sci. 1999, 155, 145–154.
- 77 A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, J. Membr. Sci. 1999, 155, 67–78.
- 78 C. Zhou, T.-S. Chung, R. Wang, Y. Liu, S. H. Goh, J. Membr. Sci. 2003, 225, 125–134.
- 79 J. N. Barsema, G. C. Kapantaidakis, N. F. A. van der Vegt, G. H. Koops, M. Wessling, J. Membr. Sci. 2003, 216, 195–205.
- 80 G. C. Kapantaidakis, G. H. Koops, M. Wessling, Desalination 2002, 145, 353–357.
- 81 A. F. Ismail, W. Lorna, Sep. Purif. Technol. 2003, 30, 37–46.
- 82 X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, G. Stevens, J. Membr. Sci. 2007, 294, 40–49.
- 83 A. L. Khan, X. Li, I. F. J. Vankelecom, J. Membr. Sci. 2011, 380, 55–62.
- 84 R. Quinn, J. B. Appleby, G. P. Pez, J. Membr. Sci. 1995, 104, 139–146.
- 85 R. Quinn, D. V. Laciak, J. Membr. Sci. 1997, 131, 49–60.
- 86 M. B. Hägg, R. Quinn, MRS Bull. 2006, 31, 750–755.
- 87 M. Yoshikawa, K. Fujimoto, H. Kinugawa, T. Kitao, Y. Kamiya, N. Ogata, J. Appl. Polym. Sci. 1995, 58, 1771–1778.
- 88 F. Peng, L. Lu, H. Sun, Y. Wang, J. Liu, Z. Jiang, Chem. Mater. 2005, 17, 6790–6796.
- 89 S. P. Nunes, K. V. Peinemann, K. Ohlrogge, A. Alpers, M. Keller, A. T. N. Pires, J. Membr. Sci. 1999, 157, 219–226.
- 90 C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, M. Escoubes, J. Membr. Sci. 1997, 130, 63–74.
- 91 D. Q. Vu, Ph.D. Thesis, University of Texas at Austin 2001.
- 92 T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, A. J. Hill, Macromolecules 2003, 36, 6844–6855.
- 93 C. Hibshman, C. J. Cornelius, E. Marand, J. Membr. Sci. 2003, 211, 25–40.
- 94 T. Suzuki, Y. Yamada, Polym. Bull. 2005, 53, 139–146.
- 95 X. Hu, H. Cong, Y. Shen, M. Radosz, Ind. Eng. Chem. Res. 2007, 46, 1547–1551.
- 96 J. H. Kim, Y. M. Lee, J. Membr. Sci. 2001, 193, 209–225.
- 97 M. F. A. Wahab, A. F. Ismail, S. J. Shilton, Sep. Purif. Technol. 2012, 86, 41–48.
- 98 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211, 311–334.
- 99 S. Kim, L. Chen, J. K. Johnson, E. Marand, J. Membr. Sci. 2007, 294, 147–158.
- 100 T.-S. Chung, S. S. Chan, R. Wang, Z. Lu, C. He, J. Membr. Sci. 2003, 211, 91–99.
- 101 Y. Li, H.-M. Guan, T.-S. Chung, S. Kulprathipanja, J. Membr. Sci. 2006, 275, 17–28.
- 102 A. M. W. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 2008, 314, 193–199.
- 103 H. H. Yong, H. C. Park, Y. S. Kang, J. Won, W. N. Kim, J. Membr. Sci. 2001, 188, 151–163.
- 104 Y. Li, T.-S. Chung, S. Kulprathipanja, AlChE J. 2007, 53, 610–616.
- 105 S. Husain, W. J. Koros, J. Membr. Sci. 2007, 288, 195–207.
- 106 T. S. Chung, L. Y. Jiang, Y. Li, S. Kulprathipanja, Progr. Polym. Sci. 2007, 32, 483–507.
- 107 S. A. Hashemifard, A. F. Ismail, T. Matsuura, J. Membr. Sci. 2010, 347, 53–61.
- 108 T. M. Gür, J. Membr. Sci. 1994, 93, 283–289.
- 109 R. Mahajan, C. M. Zimmerman, W. J. Koros, ACS Symp. Series 1999, 733, 277–286.
- 110 I. F. J. Vankelecom, E. Merckx, M. Luts, J. B. Uytterhoeven, J. Phys. Chem. 1995, 99, 13187–13192.
- 111 I. F. J. Vankelecom, S. Van den broeck, E. Merckx, H. Geerts, P. Grobet, J. B. Uytterhoeven, J. Phys. Chem. 1996, 100, 3753–3758.
- 112 Y. Sun, Z. Zhang, C. P. Wong, J. Colloid Interface Sci. 2005, 292, 436–444.
- 113 Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, G. Wilkes, J. Membr. Sci. 1997, 135, 65–79.
- 114
W. Zhou, J. H. Dong, K. Y. Qiu, Y. Wei, J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1607–1613.
10.1002/(SICI)1099-0518(19980730)36:10<1607::AID-POLA13>3.0.CO;2-K CAS Web of Science® Google Scholar
- 115 F. Yang, G. L. Nelson, J. Appl. Polym. Sci. 2004, 91, 3844–3850.
- 116 I. Sondi, T. H. Fedynyshyn, R. Sinta, E. Matijevic, Langmuir 2000, 16, 9031–9034.
- 117 D. M. Qi, Y. Z. Bao, Z. X. Weng, Z. M. Huang, Polymer 2006, 47, 4622–4629.
- 118 W. Posthumus, P. C. M. M. Magusin, J. C. M. B. Zijp, A. H. A. Tinnemans, R. V. Linde, J. Colloid Interface Sci. 2004, 269, 109–116.
- 119 C. J. Cornelius, E. Marand, Polymer 2002, 43, 2385–2400.
- 120 K. Chou, B. L. Lee, J. Mater. Sci. 1994, 29, 3565–3571.
- 121 J. J. Yang, I. M. ElNahhal, I. S. Chuang, G. E. Maciel, J. Non-Cryst. Solids 1997, 209, 19–39.
- 122 I. S. Khatiba, R. V. Parish, J. Organomet. Chem. 1989, 369, 9–16.
- 123 P. K. Jala, M. Sudarshanb, A. Sahab, S. Patela, B. K. Mishra, Colloids Surf., A 2004, 240, 173–178.
- 124 C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 2005, 15, 3559–3592.
- 125 H. Zou, S. Wu, J. Shen, Chem. Rev. 2008, 108, 3893–3957.
- 126 J. Kotek, V. Kelnar, M. Studenovsky, J. Baldrian, Polymer 2005, 46, 4876–4881.
- 127 S. C. Tjong, S. P. Bao, J. Polym. Sci., Part B 2005, 43, 253–263.
- 128 H. Fischer, Mater. Sci. Eng. C 2003, 23, 763–772.
- 129 S. C. Tjong, Mater. Sci. Eng., R 2005, 53, 73–197.
- 130 X. Y. Shang, Z. K. Zhu, J. Yin, X. D. Ma, Chem. Mater. 2002, 14, 71–77.
- 131 H. Munakata, D. Yamamoto, K. Kanamura, J. Power Sources 2008, 178, 596–602.
- 132 R. Mahajan, R. Burns, M. Schaeffer, W. J. Koros, J. Appl. Polym. Sci. 2002, 86, 881–890.
- 133 M. Jia, K. V. Peinemann, R. D. Behling, J. Membr. Sci. 1992, 73, 119–128.
- 134 B. Abramoff, J. Covino, J. Appl. Polym. Sci. 1992, 46, 1785–1791.
- 135 P. Musto, G. Ragosta, G. Scarinzi, L. Mascia, J. Membr. Sci. 2004, 45, 1697–1706.
- 136 M. Z. Rong, M. Q. Zhang, S. L. Pan, K. Friedrich, J. Appl. Polym. Sci. 2004, 92, 1771–1781.
- 137 M. W. Lee, X. Hu, L. Li, C. Y. Yue, K. C. Tam, L. Y. Cheong, Compos. Sci. Technol. 2003, 63, 1921–1929.
- 138 A. Morikawa, Y. Iyoku, M. A. Kakimoto, Y. Imai, Polym. J. 1992, 24, 107–113.
- 139 M. M. Hasan, Y. Zhou, H. Mahfuz, S. Jeelani, Mater. Sci. Eng. A 2006, 429, 181–188.
- 140 S. P. Nunes, K. V. Peinemann, K. Ohlrogge, A. Alpers, M. Keller, A. T. N. Pires, J. Membr. Sci 1999, 157, 219–226.
- 141 Y. H. Hu, C. Y. Chen, C. C. Wang, Polym. Degrad. Stab. 2004, 84, 545–553.
- 142 G. A. Wang, C. C. Wang, C. Y. Chen, Polym. Degrad. Stab. 2006, 91, 2443–2450.
- 143 T. Kashiwagi, A. B. Morgan, J. M. Antonucci, M. R. Van Landingham, R. H. Harris Jr., W. H. Awad, J. R. Shields, J. Appl. Polym. Sci. 2003, 89, 2072–2078.
- 144 F. Rault, E. Pleyber, C. Campagne, M. Rochery, S. Giraud, S. Bourbigot, E. Devaux, Polym. Degrad. Stab. 2009, 94, 955–964.
- 145 M. Washim Uddin, M.-B. Hägg, J. Membr. Sci. 2012, 423–424, 150–158.
- 146 M. Washim Uddin, M.-B. Hägg, J. Membr. Sci. 2012, 423–424, 143–149.
- 147 M. Sandru, T.-J. Kim, W. Capala, M. Huijbers, M.-B. Hägg, Energy Procedia 2013, 37, 6473–6480.
- 148 C. A. Scholes, G. W. Stevens, S. E. Kentish, J. Membr. Sci. 2010, 350, 189–199.
- 149 www.medal.airliquide.com/en/co-membrane/co-membrane-technology.html (Accessed in December 2015).
- 150 www.mtrinc.com/research.html (Accessed in December 2015.