Heat- and Alkaline-Stable Xylanases: Application, Protein Structure and Engineering
Chun-Chi Chen
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Search for more papers by this authorTzu-Ping Ko
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
Search for more papers by this authorJian-Wen Huang
AsiaPac Biotechnology Co., Ltd., Dongguan 523808, China.
Search for more papers by this authorCorresponding Author
Rey-Ting Guo
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.Search for more papers by this authorChun-Chi Chen
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Search for more papers by this authorTzu-Ping Ko
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
Search for more papers by this authorJian-Wen Huang
AsiaPac Biotechnology Co., Ltd., Dongguan 523808, China.
Search for more papers by this authorCorresponding Author
Rey-Ting Guo
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.Search for more papers by this authorAbstract
Xylan is the most abundant hemicellulosic component, and its degradation is the major step in a wide variety of industrial processes. Xylanases, which are capable of randomly hydrolyzing the β-1,4-xylosidic linkages, constitute the key enzymes in xylan decomposition. As xylanases hold a high economic potential in the marketplace, great efforts have been made in search of suitable candidates for the development into commercial products with better performances such as higher specific activity, better thermostability, higher operating temperatures, and a better pH profile. To achieve these goals, the three-dimensional structural information of xylanases with the extremophilic properties is of pivotal importance. In this review, the current knowledge about heat- and alkaline-stable xylanase structures is summarized, including protein engineering studies and focusing on the glycoside hydrolase families 10 and 11 enzymes. These structures pave the way to understanding the catalytic mechanisms of xylanases and provide an important engineering basis for their industrial applications.
References
- 1 H. V. Scheller, P. Ulvskov, Ann. Rev. Plant Biol. 2010, 61, 263–289. DOI: 10.1146/annurev-arplant-042809-112315
- 2 C. Techapun, N. Poosaran, M. Watanabe, K. Sasaki, Process Biochem. 2003, 38 (9), 1327–1340. DOI: 10.1016/s0032-9592(02)00331-x
- 3 Y. Shoham, Z. Schwartz, A. Khasin, O. Gat, Z. Zosim, E. Rosenberg, in Microorganisms to Combat Pollution (Ed: E. Rosenberg), Springer, Amsterdam 1993, 83–94.
- 4 C. C. Chen, R. Adolphson, J. F. D. Dean, K. L. Eriksson, M. W. Adams, J. Westpheling, Enzyme Microbiol. Technol. 1997, 20 (1), 39–45.
- 5 T. A. Woyengo, J. S. Sands, W. Guenter, C. M. Nyachoti, J. Anim. Sci. 2008, 86 (4), 848–857. DOI: 10.2527/jas.2007-0018
- 6 A. Veldman, H. A. Vahl, Br. Poult. Sci. 1994, 35 (4), 537–550. DOI: 10.1080/00071669408417719
- 7 W. Vahjen, T. Osswald, K. Schafer, O. Simon, Arch. Anim. Nutr. 2007, 61 (2), 90–102. DOI: 10.1080/17450390701203881
- 8 S. S. Silva, R. R. Smithard, Br. Poult. Sci. 2002, 43 (2), 274–282. DOI: 10.1080/00071660120121508
- 9 R. M. Engberg, M. S. Hedemann, S. Steenfeldt, B. B. Jensen, Poult. Sci. 2004, 83 (6), 925–938.
- 10 F. Xin, J. He, Bioresour. Technol. 2013, 135, 309–315. DOI: 10.1016/j.biortech.2012.10.002
- 11 B. C. Saha, J. Ind. Microbiol. Biotechnol. 2003, 30 (5), 279–291. DOI: 10.1007/s10295-003-0049-x
- 12 M. S. Butt, M. Tahir-Nadeem, Z. Amad, M. T. Sultan, Food Technol. Biotechnol. 2008, 46 (1), 22–31.
- 13 S. S. Dhiman, G. Garg, J. Sharma, R. Mahajan, Methoxy, New Biotechnol. 2011, 28 (6), 746–755. DOI: 10.1016/j.nbt.2010.11.004
- 14 Y. Du, P. Shi, H. Huang, X. Zhang, H. Luo, Y. Wang, B. Yao, Bioresour. Technol. 2013, 130, 161–167. DOI: 10.1016/j.biortech.2012.12.067
- 15 Y. Sato, H. Fukuda, Y. Zhou, S. Mikami, J. Biosci. Bioeng. 2010, 110 (6), 679–683. DOI: 10.1016/j.jbiosc.2010.07.015
- 16 A. M. F. Milagres, R. A. Prade, Enzyme Microb. Technol. 1994, 16 (7), 627–632. DOI: 10.1016/0141-0229(94)90130-9
- 17 B. Battan, S. S. Dhiman, S. Ahlawat, R. Mahajan, J. Sharma, Ind. J. Microbiol. 2012, 52 (2), 222–229. DOI: 10.1007/s12088-011-0118-1
- 18 E. Csiszar, A. Losonczi, G. Szakacs, I. Rusznak, L. Bezur, J. Reicher, J. of Biotechnol. 2001, 89 (2–3), 271–279.
- 19 CAZy Database, www.cazy.org/Glycoside-Hydrolases.html (Accessed on January 23, 2015)
- 20 A. White, S. G. Withers, N. R. Gilkes, D. R. Rose, Biochemistry 1994, 33 (42), 12546–12552.
- 21 A. White, D. Tull, K. Johns, S. G. Withers, D. R. Rose, Nat. Struct. Biol. 1996, 3 (2), 149–154.
- 22 A. M. Lesk, C. I. Branden, C. Chothia, Proteins 1989, 5 (2), 139–148. DOI: 10.1002/prot.340050208
- 23 R. Natesh, K. Manikandan, P. Bhanumoorthy, M. A. Viswamitra, S. Ramakumar, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2003, 59 (1), 105–117.
- 24 Ihsanawati, T. Kumasaka, T. Kaneko, C. Morokuma, R. Yatsunami, T. Sato, S. Nakamura, N. Tanaka, Proteins 2005, 61 (4), 999–1009. DOI: 10.1002/prot.20700
- 25
L. Lo Leggio, S. Kalogiannis, M. K. Bhat, R. W. Pickersgill, Proteins 1999, 36 (3), 295–306.
10.1002/(SICI)1097-0134(19990815)36:3<295::AID-PROT4>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 26 R. Natesh, P. Bhanumoorthy, P. J. Vithayathil, K. Sekar, S. Ramakumar, M. A. Viswamitra, J. Mol. Biol. 1999, 288 (5), 999–1012. DOI: 10.1006/jmbi.1999.2727
- 27 Q. A. Le, J. C. Joo, Y. J. Yoo, Y. H. Kim, Biotechnol. Bioeng. 2012, 109 (4), 867–876. DOI: 10.1002/bit.24371
- 28 M. T. Reetz, J. D. Carballeira, A. Vogel, Angew. Chem. 2006, 45 (46), 7745–7751. DOI: 10.1002/anie.200602795
- 29 Y. Xie, J. An, G. Yang, G. Wu, Y. Zhang, L. Cui, Y. Feng, J. Biol. Chem. 2014, 289, 7994–8006. DOI: 10.1074/jbc.M113.536045
- 30 K. Wang, H. Luo, J. Tian, O. Turunen, H. Huang, P. Shi, H. Hua, C. Wang, S. Wang, B. Yao, Appl. Environ. Microbiol. 2014, 80 (7), 2158–2165. DOI: 10.1128/AEM.03458-13
- 31 C. C. Chen, H. Luo, X. Han, P. Lv, T. P. Ko, W. Peng, C. H. Huang, K. Wang, J. Gao, Y. Zheng, Y. Yang, J. Zhang, B. Yao, R. T. Guo, J. Biotechnol. 2014, 189, 175–182. DOI: 10.1016/j.jbiotec.2014.08.030
- 32 J. Wang, Z. Tan, M. Wu, J. Li, J. Wu, J. Ind. Microbiol. Biotechnol. 2014, 41 (8), 1217–1225. DOI: 10.1007/s10295-014-1463-y
- 33 T. D. Spurway, C. Morland, A. Cooper, I. Sumner, G. P. Hazlewood, A. G. O'Donnell, R. W. Pickersgill, H. J. Gilbert, J. Biol. Chem. 1997, 272 (28), 17523–17530.
- 34 S. R. Andrews, E. J. Taylor, G. Pell, F. Vincent, V. M. Ducros, G. J. Davies, J. H. Lakey, H. J. Gilbert, J. Biol. Chem. 2004, 279 (52), 54369–54379. DOI: 10.1074/jbc.M409044200
- 35 L. Liu, G. Zhang, Z. Zhang, S. Wang, H. Chen, J. Biol. Chem. 2011, 286 (52), 44710–44715. DOI: 10.1074/jbc.M111.269753
- 36 S. Kamondi, A. Szilagyi, L. Barna, P. Zavodszky, Biochem. Biophys. Res. Comm. 2008, 374 (4), 725–730. DOI: 10.1016/j.bbrc.2008.07.095
- 37 A. Bhardwaj, S. Leelavathi, S. Mazumdar-Leighton, A. Ghosh, S. Ramakumar, V. S. Reddy, PloS One 2010, 5 (6), e11347. DOI: 10.1371/journal.pone.0011347
- 38 H. Xie, J. Flint, M. Vardakou, J. H. Lakey, R. J. Lewis, H. J. Gilbert, C. Dumon, J. Mol. Biol. 2006, 360 (1), 157–167. DOI: 10.1016/j.jmb.2006.05.002
- 39 T. V. Fedorova, A. M. Chulkin, E. A. Vavilova, I. G. Maisuradze, A. A. Trofimov, I. N. Zorov, V. P. Khotchenkov, K. M. Polyakov, S. V. Benevolensky, O. V. Koroleva, V. S. Lamzin, Biochemistry. Biokhimiia 2012, 77 (10), 1190–1198. DOI: 10.1134/S0006297912100112
- 40 A. Blanco, P. Diaz, J. Zueco, P. Parascandola, F. I. Javier Pastor, Microbiology 1999, 145 (8), 2163–2170.
- 41 H. Kim, K. H. Jung, M. Y. Pack, Appl. Microbiol. Biotechnol. 2000, 54 (4), 521–527.
- 42 C. Winterhalter, P. Heinrich, A. Candussio, G. Wich, W. Liebl, Mol. Microbiol. 1995, 15 (3), 431–444.
- 43 V. Zverlov, K. Piotukh, O. Dakhova, G. Velikodvorskaya, R. Borriss, Appl. Microbiol. Biotechnol. 1996, 45 (1–2), 245–247.
- 44 A. Sunna, M. D. Gibbs, P. L. Bergquist, Microbiology 2000, 146 (11), 2947–2955.
- 45 M. Sajjad, M. I. Khan, N. S. Akbar, S. Ahmad, I. Ali, M. W. Akhtar, J. Biotechnol. 2010, 145 (1), 38–42. DOI: 10.1016/j.jbiotec.2009.10.013
- 46 R. Araki, S. Karita, A. Tanaka, T. Kimura, K. Sakka, Biosci. Biotechol. Biochem. 2006, 70 (12), 3039–3041. DOI: 10.1271/Bbb.60348
- 47 M. Abou Hachem, E. Nordberg Karlsson, E. Bartonek-Roxa, S. Raghothama, P. J. Simpson, H. J. Gilbert, M. P. Williamson, O. Holst, Biochem. J. 2000, 345 (1), 53–60.
- 48 M. Abou-Hachem, E. N. Karlsson, P. J. Simpson, S. Linse, P. Sellers, M. P. Williamson, S. J. Jamieson, H. J. Gilbert, D. N. Bolam, O. Holst, Biochemistry 2002, 41 (18), 5720–5729.
- 49
D. D. Meng, Y. Ying, X. H. Chen, M. Lu, K. Ning, L. S. Wang, F. L. Li, Appl. Environ. Microbiol. 2015, in press. DOI: 10.1128/AEM.03677-14
10.1128/AEM.03677‐14 Google Scholar
- 50 G. Mamo, M. Thunnissen, R. Hatti-Kaul, B. Mattiasson, Biochimie 2009, 91 (9), 1187–1196. DOI: 10.1016/j.biochi.2009.06.017
- 51 K. Manikandan, A. Bhardwaj, N. Gupta, N. K. Lokanath, A. Ghosh, V. S. Reddy, S. Ramakumar, Protein Sci. 2006, 15 (8), 1951–1960. DOI: 10.1110/ps.062220206
- 52 O. Gallardo, F. I. Pastor, J. Polaina, P. Diaz, R. Lysek, P. Vogel, P. Isorna, B. Gonzalez, J. Sanz-Aparicio, J. Biol. Chem. 2010, 285 (4), 2721–2733. DOI: 10.1074/jbc.M109.064394
- 53 Z. G. Zhang, Z. L. Yi, X. Q. Pei, Z. L. Wu, Bioresour. Technol. 2010, 101 (23), 9272–9278. DOI: 10.1016/j.biortech.2010.07.060
- 54 A. Torronen, A. Harkki, J. Rouvinen, EMBO J. 1994, 13 (11), 2493–2501.
- 55 G. Paes, J. G. Berrin, J. Beaugrand, Biotechnol. Adv. 2012, 30 (3), 564–592. DOI: 10.1016/j.biotechadv.2011.10.003
- 56 M. Purmonen, J. Valjakka, K. Takkinen, T. Laitinen, J. Rouvinen, Protein Eng., Des. Sel. 2007, 20 (11), 551–559. DOI: 10.1093/protein/gzm056
- 57 N. Hakulinen, O. Turunen, J. Janis, M. Leisola, J. Rouvinen, Eur. J. Biochem. 2003, 270 (7), 1399–1412. DOI: 10.1046/j.1432-1033.2003.03496.x
- 58 J. Janis, O. Turunen, M. Leisola, P. J. Derrick, J. Rouvinen, P. Vainiotalo, Biochemistry 2004, 43 (29), 9556–9566. DOI: 10.1021/bi049597b
- 59 S. J. Gao, J. Q. Wang, M. C. Wu, H. M. Zhang, X. Yin, J. F. Li, Biotechnol. Bioeng. 2013, 110 (4), 1028–1038. DOI: 10.1002/bit.24768
- 60 H. Shibuya, S. Kaneko, K. Hayashi, Biochem. J. 2000, 349 (2), 651–656.
- 61 J. Y. Sun, M. Q. Liu, Y. L. Xu, Z. R. Xu, L. Pan, H. Gao, Protein Expression Purif. 2005, 42 (1), 122–130. DOI: 10.1016/j.pep.2005.03.009
- 62 X. Yin, J. F. Li, J. Q. Wang, C. D. Tang, M. C. Wu, J. Sci. Food Agric. 2013, 93 (12), 3016–3023. DOI: 10.1002/jsfa.6134
- 63 H. Zhang, J. Li, J. Wang, Y. Yang, M. Wu, Biotechnol. Biofuels 2014, 7 (1), 3. DOI: 10.1186/1754-6834-7-3
- 64 S. Zhang, K. Zhang, X. Chen, X. Chu, F. Sun, Z. Dong, Biochem. Biophys. Res. Comm. 2010, 395 (2), 200–206. DOI: 10.1016/j.bbrc.2010.03.159
- 65 F. Fenel, M. Leisola, J. Janis, O. Turunen, J. Biotechnol. 2004, 108 (2), 137–143.
- 66 H. Li, A. Kankaanpaa, H. Xiong, M. Hummel, H. Sixta, H. Ojamo, O. Turunen, Enzyme Microb. Technol. 2013, 53 (6–7), 414–419. DOI: 10.1016/j.enzmictec.2013.09.004
- 67 G. Paes, M. J. O'Donohue, J. Biotechnol. 2006, 125 (3), 338–350. DOI: 10.1016/j.jbiotec.2006.03.025
- 68 Y. Wang, Z. Fu, H. Huang, H. Zhang, B. Yao, H. Xiong, O. Turunen, Bioresour. Technol. 2012, 112, 275–279. DOI: 10.1016/j.biortech.2012.02.092
- 69 Y. S. Cheng, C. C. Chen, C. H. Huang, T. P. Ko, W. Luo, J. W. Huang, J. R. Liu, R. T. Guo, J. Biol. Chem. 2014, 289 (16), 11020–11028. DOI: 10.1074/jbc.M114.550905
- 70 K. Gruber, G. Klintschar, M. Hayn, A. Schlacher, W. Steiner, C. Kratky, Biochemistry 1998, 37 (39), 13475–13485. DOI: 10.1021/bi980864l
- 71 P. R. Kumar, S. Eswaramoorthy, P. J. Vithayathil, M. A. Viswamitra, J. Mol. Biol. 2000, 295 (3), 581–593. DOI: 10.1006/jmbi.1999.3348
- 72 A. A. McCarthy, D. D. Morris, P. L. Bergquist, E. N. Baker, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2000, 56 (11), 1367–1375.
- 73 J. Davoodi, W. W. Wakarchuk, P. R. Carey, W. K. Surewicz, Biophys. Chem. 2007, 125 (2–3), 453–461. DOI: 10.1016/j.bpc.2006.10.006
- 74 M. Y. Jeong, S. Kim, C. W. Yun, Y. J. Choi, S. G. Cho, J. Biotechnol. 2007, 127 (2), 300–309. DOI: 10.1016/j.jbiotec.2006.07.005
- 75 O. Turunen, K. Etuaho, F. Fenel, J. Vehmaanpera, X. Wu, J. Rouvinen, M. Leisola, J. Biotechnol. 2001, 88 (1), 37–46.
- 76 W. W. Wakarchuk, W. L. Sung, R. L. Campbell, A. Cunningham, D. C. Watson, M. Yaguchi, Protein Eng. 1994, 7 (11), 1379–1386.
- 77
G. W. Harris, R. W. Pickersgill, I. Connerton, P. Debeire, J. P. Touzel, C. Breton, S. Perez, Proteins 1997, 29 (1), 77–86.
10.1002/(SICI)1097-0134(199709)29:1<77::AID-PROT6>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 78 J. C. Joo, S. P. Pack, Y. H. Kim, Y. J. Yoo, J. Biotechnol. 2011, 151 (1), 56–65. DOI: 10.1016/j.jbiotec.2010.10.002
- 79 J. C. Joo, S. Pohkrel, S. P. Pack, Y. J. Yoo, J. Biotechnol. 2010, 146 (1–2), 31–39. DOI: 10.1016/j.jbiotec.2009.12.021
- 80 W. Bai, C. Zhou, Y. Xue, C. H. Huang, R. T. Guo, Y. Ma, Biotechnol. Lett. 2014, 36 (7), 1495–1501. DOI: 10.1007/s10529-014-1512-7
- 81 A. J. Oakley, T. Heinrich, C. A. Thompson, M. C. Wilce, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2003, 59 (4), 627–636.
- 82 A. Sapag, J. Wouters, C. Lambert, P. de Ioannes, J. Eyzaguirre, E. Depiereux, J. Biotechnol. 2002, 95, 109–131.
- 83 M. D. Joshi, G. Sidhu, I. Pot, G. D. Brayer, S. G. Withers, L. P. McIntosh, J. Mol. Biol. 2000, 299 (1), 255–279. DOI: 10.1006/jmbi.2000.3722
- 84 D. V. Satyanarayana, J. Ind. Microbiol. Biotechnol. 2013, 40 (12), 1373–1381. DOI: 10.1007/s10295-013-1347-6
- 85 R. Sriprang, K. Asano, J. Gobsuk, S. Tanapongpipat, V. Champreda, L. Eurwilaichitr, J. Biotechnol. 2006, 126 (4), 454–462. DOI: 10.1016/j.jbiotec.2006.04.031
- 86 O. Turunen, M. Vuorio, F. Fenel, M. Leisola, Protein Eng. 2002, 15 (2), 141–145.
- 87 F. De Lemos Esteves, T. Gouders, J. Lamotte-Brasseur, S. Rigali, J. M. Frere, Protein Sci. 2005, 14 (2), 292–302. DOI: 10.1110/ps.04978705
- 88 C. Dumon, A. Varvak, M. A. Wall, J. E. Flint, R. J. Lewis, J. H. Lakey, C. Morland, P. Luginbuhl, S. Healey, T. Todaro, G. DeSantis, M. Sun, L. Parra-Gessert, X. Tan, D. P. Weiner, H. J. Gilbert, J. Biol. Chem. 2008, 283 (33), 22557–22564. DOI: 10.1074/jbc.M800936200
- 89 N. Palackal, Y. Brennan, W. N. Callen, P. Dupree, G. Frey, F. Goubet, G. P. Hazlewood, S. Healey, Y. E. Kang, K. A. Kretz, E. Lee, X. Tan, G. L. Tomlinson, J. Verruto, V. W. Wong, E. J. Mathur, J. M. Short, D. E. Robertson, B. A. Steer, Protein Sci. 2004, 13 (2), 494–503. DOI: 10.1110/ps.03333504
- 90 K. Miyazaki, M. Takenouchi, H. Kondo, N. Noro, M. Suzuki, S. Tsuda, J. Biol. Chem. 2006, 281 (15), 10236–10242. DOI: 10.1074/jbc.M511948200
- 91 Y.-L. Chen, T.-Y. Tang, K.-J. Cheng, Can. J. Microbiol. 2001, 47 (12), 1088–1094. DOI: 10.1139/cjm-47-12-1088
- 92 T. Belien, P. Verjans, C. M. Courtin, J. A. Delcour, Biochem. Biophys. Res. Comm. 2008, 368 (1), 74–80. DOI: 10.1016/j.bbrc.2008.01.047
- 93 R. Ruller, L. Deliberto, T. L. Ferreira, R. J. Ward, Proteins 2008, 70 (4), 1280–1293. DOI: 10.1002/prot.21617
- 94 R. Ruller, J. Alponti, L. A. Deliberto, L. M. Zanphorlin, C. B. Machado, R. J. Ward, Protein Eng., Des. Sel. 2014, 27 (8), 255–262. DOI: 10.1093/protein/gzu027
- 95 D. E. Stephens, K. Rumbold, K. Permaul, B. A. Prior, S. Singh, J. Biotechnol. 2007, 127 (3), 348–354. DOI: 10.1016/j.jbiotec.2006.06.015
- 96 D. E. Stephens, S. Singh, K. Permaul, FEMS Microbiol. Lett. 2009, 293 (1), 42–47. DOI: 10.1111/j.1574-6968.2009.01519.x
- 97 Q. Wang, T. Xia, Biotechnol. Lett. 2008, 30 (5), 937–944. DOI: 10.1007/s10529-007-9508-1
- 98 N. P. McHunu, S. Singh, K. Permaul, J. Biotechnol. 2009, 141 (1–2), 26–30. DOI: 10.1016/j.jbiotec.2009.02.021
- 99 C. A. Hokanson, G. Cappuccilli, T. Odineca, M. Bozic, C. A. Behnke, M. Mendez, W. J. Coleman, R. Crea, Protein Eng., Des. Sel. 2011, 24 (8), 597–605. DOI: 10.1093/protein/gzr028
- 100 D. E. Stephens, F. I. Khan, P. Singh, K. Bisetty, S. Singh, K. Permaul, J. Biotechnol. 2014, 187, 139–146. DOI: 10.1016/j.jbiotec.2014.07.446
- 101 H. Zheng, Y. Liu, M. Sun, Y. Han, J. Wang, J. Sun, F. Lu, J. Ind. Microbiol. Biotechnol. 2014, 41 (1), 153–162. DOI: 10.1007/s10295-013-1363-6.
- 102
S. F. Yuan, T. H. Wu, H. L. Lee, H. Y. Hsieh, W. L. Lin, B. Yang, C. K. Chang, Q. Li, J. Gao, C. H. Huang, M. C. Ho, R. T. Guo, P. H. Liang, J. Biol. Chem. 2015, in press. DOI: 10.1074/jbc.M114.604454
10.1074/jbc.M114.604454 Google Scholar
- 103 T. H. Wu, C. H. Huang, T. P. Ko, H. L. Lai, Y. Ma, C. C. Chen, Y. S. Cheng, J. R. Liu, R. T. Guo, Biochim. Biophys. Acta 2011, 1814 (12), 1832–1840. DOI: 10.1016/j.bbapap.2011.07.020