A Computational Insight on the Inhibitory Potential of 8-Hydroxydihydrosanguinarine (8-HDS), a Pyridone Containing Analog of Sanguinarine, against SARS CoV2**
Atala Bihari Jena
Center of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, 751004 Odisha, India
Contributed equally.
Search for more papers by this authorNamrata Kanungo
Department of Biotechnology, Utkal University, Bhubaneswar, 751004 Odisha, India
Contributed equally.
Search for more papers by this authorGagan Bihari Nityananda Chainy
Department of Biotechnology, Utkal University, Bhubaneswar, 751004 Odisha, India
Search for more papers by this authorVinod Devaraji
Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
Search for more papers by this authorSudipta Kumar Das
Center of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, 751004 Odisha, India
Search for more papers by this authorCorresponding Author
Jagneshwar Dandapat
Center of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, 751004 Odisha, India
Department of Biotechnology, Utkal University, Bhubaneswar, 751004 Odisha, India
Search for more papers by this authorAtala Bihari Jena
Center of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, 751004 Odisha, India
Contributed equally.
Search for more papers by this authorNamrata Kanungo
Department of Biotechnology, Utkal University, Bhubaneswar, 751004 Odisha, India
Contributed equally.
Search for more papers by this authorGagan Bihari Nityananda Chainy
Department of Biotechnology, Utkal University, Bhubaneswar, 751004 Odisha, India
Search for more papers by this authorVinod Devaraji
Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
Search for more papers by this authorSudipta Kumar Das
Center of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, 751004 Odisha, India
Search for more papers by this authorCorresponding Author
Jagneshwar Dandapat
Center of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, 751004 Odisha, India
Department of Biotechnology, Utkal University, Bhubaneswar, 751004 Odisha, India
Search for more papers by this authorPreprint information: ‘ResearchSquare’ (https://doi.org/10.21203/rs.3.rs-153786/v1) ‘figshare’ (https://doi.org/10.6084/m9.figshare.14364368.v2).
Abstract
The unprecedented global pandemic of COVID-19 has created a daunting scenario urging an immediate generation of therapeutic strategy. Interventions to curb the spread of viral infection primarily include setting targets against the virus. Here in this study we target S protein to obstruct the viral attachment and entry and also the M pro to prevent the viral replication. For this purpose, the interaction of S protein and M pro with phytocompounds, sanguinarine and eugenol, and their derivatives were studied using computational tools. Docking studies gave evidence that 8-hydroxydihydrosanguinarine (8-HDS), a derivative of sanguinarine, showed maximum binding affinity with both the targets. The binding energies of the ligand with S protein and M pro scored to be ΔGb −9.4 Kcal/mol and ΔGb −10.3 Kcal/mol, respectively. MD simulation studies depict that the phytocompound could effectively cause structural perturbations in the targets which would affect their functions. 8-Hydroxydihydrosanguinarine distorts the α-helix in the secondary structure of M pro and RBD site of S protein. Protein-protein interaction study in presence of 8-hydroxydihydrosanguinarine also corroborate the above findings which indicate that this polyphenol interferes in the coupling of S protein and ACE2. The alterations in protonation of M pro suggest that the protein structure undergoes significant structural changes at neutral pH. ADME property of 8-hydroxydihydrosanguinarine indicates this could be a potential drug. This makes the phyto-alkaloid a possible therapeutic molecule for anti COVID-19 drug design.
Graphical Abstract
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in Research Square, Figshare at ResearchSquare™ (https://doi.org/10.21203/rs.3.rs-153786/v1) and in figshare™ (https://doi.org/10.6084/m9.figshare.14364368.v2), reference number 0.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cbdv202200266-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. A. Rabi, M. S. Al Zoubi, G. A. Kasasbeh, D. M. Salameh, A. D. Al-Nasser, ‘SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far’, Pathogenesis 2020, 9, 231.
- 2P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao, Z.-L. Shi, ‘A pneumonia outbreak associated with a new coronavirus of probable bat origin’, Nature 2020, 579, 270–273.
- 3C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, M. Zheng, L. Chen, H. Li, ‘Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods’, Acta Pharm. Sin. B 2020, 10, 766–788.
- 4S. Dong, J. Sun, Z. Mao, L. Wang, Y.-L. Lu, J. Li, ‘A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV)’, J. Med. Virol. 2020, 92, 1542–1548.
- 5S. F. Ahmed, A. A. Quadeer, M. R. McKay, ‘Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies’, Viruses 2020, 12, 254.
- 6R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W. J. Liu, D. Wang, W. Xu, E. C. Holmes, G. F. Gao, G. Wu, W. Chen, W. Shi, W. Tan, ‘Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding’, Lancet 2020, 395, 565–574.
- 7M. U. Mirza, M. Froeyen, ‘Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase’, J. Pharm. Anal. 2020, 10, 320–328.
- 8W. Dai, B. Zhang, X.-M. Jiang, H. Su, J. Li, Y. Zhao, X. Xie, Z. Jin, J. Peng, F. Liu, C. Li, Y. Li, F. Bai, H. Wang, X. Cheng, X. Cen, S. Hu, X. Yang, J. Wang, X. Liu, G. Xiao, H. Jiang, Z. Rao, L.-K. Zhang, Y. Xu, H. Yang, H. Liu, ‘Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease’, Science 2020, 368, 1331–1335.
- 9A. R. Fehr, S. Perlman, in Coronaviruses: Methods in Molecular Biology, Eds. H. Maier, E. Bickerton, P. Britton, Humana Press, New York, 2015, Vol. 1282, p. 1.
- 10M. Prajapat, P. Sarma, N. Shekhar, A. Prakash, P. Avti, A. Bhattacharyya, H. Kaur, S. Kumar, S. Bansal, A. R. Sharma, B. Medhi, ‘Update on the target structures of SARS-CoV-2: A systematic review’, Indian J. Pharmacol. 2020, 52, 142–149.
- 11X. Xue, H. Yu, H. Yang, F. Xue, Z. Wu, W. Shen, J. Li, Z. Zhou, Y. Ding, Q. Zhao, X. C. Zhang, M. Liao, M. Bartlam, Z. Rao, ‘Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design’, J. Virol. 2008, 82, 2515–2527.
- 12K. Anand, G. J. Palm, J. R. Mesters, S. G. Siddell, J. Ziebuhr, R. Hilgenfeld, ‘Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain’, EMBO J. 2002, 21, 3213–3224.
- 13J. Shi, Z. Wei, J. Song, ‘Dissection study on the severe acute respiratory syndrome 3 C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors’, J. Biol. Chem. 2004, 279, 24765–24773.
- 14L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, R. Hilgenfeld, ‘Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors’, Science 2020, 368, 409–412.
- 15A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K.-Y. Yuen, ‘Coronaviruses - drug discovery and therapeutic options’, Nat. Rev. Drug Discovery 2016, 15, 327–347.
- 16A.-T. Ton, F. Gentile, M. Hsing, F. Ban, A. Cherkasov, ‘Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 Billion compounds’, Mol. Inf. 2020, 39, e2000028.
- 17I.-L. Lu, N. Mahindroo, P.-H. Liang, Y.-H. Peng, C.-J. Kuo, K.-C. Tsai, H.-P. Hsieh, Y.-S. Chao, S.-Y. Wu, ‘Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease’, J. Med. Chem. 2006, 49, 5154–5161.
- 18J. E. Blanchard, N. H. Elowe, C. Huitema, P. D. Fortin, J. D. Cechetto, L. D. Eltis, E. D. Brown, ‘High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase’, Chem. Biol. 2004, 11, 1445–1453.
- 19A. B. Jena, N. Kanungo, V. Nayak, G. B. N. Chainy, J. Dandapat, ‘Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies’, Sci. Rep. 2021, 11, 2043.
- 20J. F. Riordan, ‘Angiotensin-I-converting enzyme and its relatives’, Genome Biol. 2003, 4, 225.
- 21M. H. Sampangi-Ramaiah, ‘Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease’, Curr. Sci. 2020, 118, 1087–1092.
- 22R. Suravajhala, A. Parashar, B. Malik, V. A. Nagaraj, G. Padmanaban, P. B. K. Kishor, R. Polavarapu, P. Suravajhala, ‘Comparative Docking Studies on Curcumin with COVID-19 Proteins’, Preprints 2020.
- 23Y. Tragoolpua, A. Jatisatienr, ‘Anti-herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & S. G. Harrison and essential oil, eugenol’, Phytother. Res. 2007, 21, 1153–1158.
- 24M. Ulanowska, B. Olas, ‘Biological properties and prospects for the application of Eugenol – a review’, Int. J. Mol. Sci. 2021, 22, 3671.
- 25W. Guo, X. Lu, B. Liu, H. Yan, J. Feng, ‘Anti-TMV activity and mode of action of three alkaloids isolated from Chelidonium majus’, Pest Manage. Sci. 2021, 77, 510–517.
- 26T.-J. Cheng, D. S. Goodsell, C.-C. Kan, ‘Identification of Sanguinarine as a novel HIV protease inhibitor from high throughput screening of 2000 drugs and natural products with a cell-based assay’, Lett. Drug Des. Discovery 2005, 2, 364–371.
- 27K.-M. Cho, I.-D. Yoo, W.-G. Kim, ‘8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L.’, Biol. Pharm. Bull. 2006, 29, 2317–2320.
- 28I. Mackraj, T. Govender, P. Gathiram, ‘Sanguinarine’, Cardiovasc. Drug Rev. 2008, 26, 75–83.
- 29P. S. Dragovich, T. J. Prins, R. Zhou, T. O. Johnson, Y. Hua, H. T. Luu, S. K. Sakata, E. L. Brown, F. C. Maldonado, T. Tuntland, C. A. Lee, S. A. Fuhrman, L. S. Zalman, A. K. Patick, D. A. Matthews, E. Y. Wu, M. Guo, B. C. Borer, N. K. Nayyar, T. Moran, L. Chen, P. A. Rejto, P. W. Rose, M. C. Guzman, E. Z. Dovalsantos, S. Lee, K. McGee, M. Mohajeri, A. Liese, J. Tao, M. B. Kosa, B. Liu, M. R. Batugo, J.-P. R. Gleeson, Z. P. Wu, J. Liu, J. W. Meador, R. A. Ferre, ‘Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 8. Pharmacological optimization of orally bioavailable 2-pyridone-containing peptidomimetics’, J. Med. Chem. 2003, 46, 4572–4585.
- 30Z. Lv, C. Sheng, T. Wang, Y. Zhang, J. Liu, J. Feng, H. Sun, H. Zhong, C. Niu, K. Li, ‘Design, synthesis, and antihepatitis B virus activities of novel 2-pyridone derivatives’, J. Med. Chem. 2010, 53, 660–668.
- 31M. Pi, K. Kapoor, R. Ye, S. K. Nishimoto, J. C. Smith, J. Baudry, L. D. Quarles, ‘Evidence for Osteocalcin Binding and Activation of GPRC6 A in β-Cells’, Endocrinology 2016, 157, 1866–1880.
- 32D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh, O. Abiona, B. S. Graham, J. S. McLellan, ‘Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation’, Science 2020, 367, 1260–1263.
- 33A. Bleibtreu, M. Bertine, C. Bertin, N. Houhou-Fidouh, B. Visseaux, ‘Focus on Middle East respiratory syndrome coronavirus (MERS-CoV)’, Med. Mal. Infect. 2020, 50, 243–251.
- 34R. L. Graham, R. S. Baric, ‘Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission’, J. Virol. 2020, 84, 3134–3146.
- 35D. P. Bezerra, G. C. G. Militão, M. C. De Morais, D. P. De Sousa, ‘The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment’, Nutrients 2017, 9, 1367.
- 36K. G. Lee, T. Shibamoto, ‘Antioxidant properties of aroma compounds isolated from soybeans and mung beans’, J. Agric. Food Chem. 2000, 48, 4290–4293.
- 37G. Charalambous, G. Inglett (Eds), ‘The Quality of Foods and Beverages: Chemistry and Technology’, Academic Press, New York, Volume 2, 1981.
- 38M. J. Jordán, K. Tandon, P. E. Shaw, K. L. Goodner, ‘Aromatic profile of aqueous banana essence and banana fruit by gas chromatography-mass spectrometry (GC/MS) and gas chromatography-olfactometry (GC−O)’, J. Agric. Food Chem. 2001, 49, 4813–4817.
- 39G. P. Kamatou, I. Vermaak, A. M. Viljoen, ‘Eugenol from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule’, Molecules 2012, 17, 6953–6981.
- 40A. Marchese, R. Barbieri, E. Coppo, I. E. Orhan, M. Daglia, S. F. Nabavi, M. Izadi, M. Abdollahi, S. M. Nabavi, M. Ajami, ‘Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint’, Crit. Rev. Microbiol. 2017, 43, 668–689.
- 41F. Chen, Z. Shi, K. G. Neoh, E. T. Kang, ‘Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles’, Biotechnol. Bioeng. 2009, 104, 30–39.
- 42Y. Tragoolpua, A. Jatisatienr, ‘Anti-herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & S. G. Harrison and essential oil, eugenol’, Phytother. Res. 2007, 21, 1153–1158.
- 43F. Benencia, M. C. Courrèges, ‘In vitro and in vivo activity of eugenol on human herpesvirus’, Phytother. Res. 2000, 14, 495–500.
- 44J. Serkedjieva, S. Ivancheva, ‘Antiherpes virus activity of extracts from the medicinal plant Geranium sanguineum L’, J. Ethnopharmacol. 1998, 64, 59–68.
- 45T. Lane, M. Anantpadma, J. S. Freundlich, R. A. Davey, P. B. Madrid, S. Ekins, ‘The Natural Product Eugenol Is an Inhibitor of the Ebola Virus in vitro’, Pharm. Res. 2019, 36, 104.
- 46M. Wink, ‘Allelochemical properties or the Raison D’être of Alkaloids’, Alkaloids Chem. Pharmacol. 1993, 43, 1–118.
- 47G. Y. Zuo, F. Y. Meng, X. Y. Hao, Y. L. Zhang, G. C. Wang, G. L. Xu, ‘Antibacterial alkaloids from Chelidonium majus Linn (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus’, J. Pharm. Pharm. Sci. 2008, 11, 90–94.
- 48G. Y. Zuo, F. Y. Meng, J. Han, X.-Y. Hao, G.-C. Wang, Y.-L. Zhang, Q. Zhang, ‘In vitro activity of plant extracts and alkaloids against clinical isolates of extended-spectrum β-lactamase (ESBL)-producing strains’, Molecules 2011, 16, 5453–5459.
- 49F. Meng, G. Zuo, X. Hao, G. Wang, H. Xiao, J. Zhang, G. Xu, ‘Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates’, J. Ethnopharmacol. 2009, 125, 494–496.
- 50J. Lenfeld, M. Kroutil, E. Marsálek, J. Slavik, V. Preininger, V. Šimánek, ‘Antiinflammatory activity of quaternary benzophenanthridine alkaloids from Chelidonium majus’, Planta Med. 1981, 43, 161–165.
- 51S. Agarwal, M. A. Reynolds, S. Pou, D. E. Peterson, J. A. Charon, J. B. Suzuki, ‘The effect of sanguinarine on human peripheral blood neutrophil viability and functions’, Oral Microbiol. Immunol. 1991, 6, 51–61.
- 52J. M. Herbert, J. M. Augereau, J. Gleye, J. P. Maffrand, ‘Chelerythrine is a potent and specific inhibitor of protein kinase C’, Biochem. Biophys. Res. Commun. 1990, 172, 993–999.
- 53A. B. Jena, R. R. Samal, K. Kumari, J. Pradhan, G. B. N. Chainy, U. Subudhi, S. Pal, J. Dandapat, ‘The benzene metabolite p-benzoquinone inhibits the catalytic activity of bovine liver catalase: A biophysical study’, Int. J. Biol. Macromol. 2021, 167, 871–880.
- 54E. van Dijk, A. Hoogeveen, S. Abeln, ‘The hydrophobic temperature dependence of amino acids directly calculated from protein structures’, PLoS Comput. Biol. 2015, 11, e1004277.
- 55A. Daina, O. Michielin, V. Zoete, ‘SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules’, Sci. Rep. 2017, 7, 42717.
- 56A. Daina, V. Zoete, ‘A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules’, ChemMedChem 2016, 11, 1117–1121.
- 57D. C. Bas, D. M. Rogers, J. H. Jensen, ‘Very fast prediction and rationalization of pKa values for protein-ligand complexes’, Proteins 2008, 73, 765–783.
- 58E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, ‘UCSF Chimera, a visualization system for exploratory research and analysis’, J. Comput. Chem. 2004, 25, 1605–1612.
- 59O. Trott, A. J. Olson, ‘AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading’, J. Comput. Chem. 2010, 31, 455–461.
- 60Dassault Systemes BIOVIA, ‘BIOVIA Discovery Studio – BIOVIA – Dassault Systèmes®’, https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/, 2017, Accessed on September 29, 2021.
- 61D. Kozakov, D. R. Hall, B. Xia, K. A. Porter, D. Padhorny, C. Yueh, D. Beglov, S. Vajda, ‘The ClusPro web server for protein-protein docking’, Nat. Protoc. 2017, 12, 255–278.
- 62Schrodinger Release 2020-2, ‘Announcing Schrödinger Software Release 2020-2, Schrödinger’, https://www.schrodinger.com/user-announcement/announcing-schrodinger-software-release-2020-2, 2020, Accessed on September 29, 2021.
- 63R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, ‘Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes’, J. Med. Chem. 2006, 49, 6177–6196.
- 64Schrödinger Release 2020-2: Desmond Molecular Dynamics System (2020), D. E. Shaw Research, New York, NY. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY. Accessed on September 29, 2021.
- 65Schrodinger Release 2020-2, ‘Maestro (2020) Maestro | Schrödinger’, https://www.schrodinger.com/products/maestro. Accessed on September 29, 2021.
- 66Schrodinger Release 2018-2: Prime, Schrodinger. Schrodinger, LLC, New York, NY. Accessed on September 29, 2021.
- 67M. Rostkowski, M. H. Olsson, C. R. Søndergaard, J. H. Jensen, ‘Graphical analysis of pH-dependent properties of proteins predicted using PROPKA’, BMC Struct. Biol. 2011, 11, 6.