Volume 50, Issue 10 pp. 3365-3376
Research Article

Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21WAF1/Cip1 expression

Keiichiro Nishida

Corresponding Author

Keiichiro Nishida

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Department of Human Morphology, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, JapanSearch for more papers by this author
Takamitsu Komiyama

Takamitsu Komiyama

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Shin-ichi Miyazawa

Shin-ichi Miyazawa

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Zheng-Nan Shen

Zheng-Nan Shen

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Takayuki Furumatsu

Takayuki Furumatsu

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Hideyuki Doi

Hideyuki Doi

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Aki Yoshida

Aki Yoshida

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Jiro Yamana

Jiro Yamana

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Masahiro Yamamura

Masahiro Yamamura

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Yoshihumi Ninomiya

Yoshihumi Ninomiya

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Hajime Inoue

Hajime Inoue

Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Search for more papers by this author
Hiroshi Asahara

Hiroshi Asahara

The Scripps Research Institute, La Jolla, California

Search for more papers by this author
First published: 08 October 2004
Citations: 178

Abstract

Objective

To examine whether depsipeptide (FK228), a histone deacetylase (HDA) inhibitor, has inhibitory effects on the proliferation of synovial fibroblasts from rheumatoid arthritis (RA) patients, and to examine the effects of systemic administration of FK228 in an animal model of arthritis.

Methods

Autoantibody-mediated arthritis (AMA) was induced in 19 male DBA/1 mice (6–7 weeks old); 10 of them were treated by intravenous administration of FK228 (2.5 mg/kg), and 9 were used as controls. The effects of FK228 were examined by radiographic, histologic, and immunohistochemical analyses and arthritis scores. RA synovial fibroblasts (RASFs) were obtained at the time of joint replacement surgery. In vitro effects of FK228 on cell proliferation were assessed by MTT assay. Cell morphology was examined by light and transmission electron microscopy. The effects on the expression of the cell cycle regulators p16INK4a and p21WAF1/Cip1 were examined by real-time polymerase chain reaction and Western blot analysis. The acetylation status of the promoter regions of p16INK4a and p21WAF1/Cip1 were determined by chromatin immunoprecipitation assay.

Results

A single intravenous injection of FK228 (2.5 mg/ml) successfully inhibited joint swelling, synovial inflammation, and subsequent bone and cartilage destruction in mice with AMA. FK228 treatment induced histone hyperacetylation in the synovial cells and decreased the levels of tumor necrosis factor α and interleukin-1β in the synovial tissues of mice with AMA. FK228 inhibited the in vitro proliferation of RASFs in a dose-dependent manner. Treatment of cells with FK228 induced the expression of p16INK4a and up-regulated the expression of p21WAF1/Cip1. These effects of FK228 on p16INK4a and p21WAF1/Cip1 were related to the acetylation of the promoter region of the genes.

Conclusion

Our findings strongly suggest that systemic administration of HDA inhibitors may represent a novel therapeutic target in RA by means of cell cycle arrest in RASFs via induction of p16INK4a expression and increase in p21WAF1/Cip1 expression.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

click me