Synthesis and surface modification of sunflower oil-based non-isocyanate polyurethane: Physicochemical and antibacterial properties
María del Pilar Maya
Grupo De Investigación Ciencia De Los Materiales, Sede de Investigación Universitaria, SIU, Universidad De Antioquia, Medellín, Colombia
Contribution: Conceptualization (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (equal), Writing - original draft (lead), Writing - review & editing (supporting)
Search for more papers by this authorSusana Torres
Cellular and Molecular Biology Unit; Corporación Para Investigaciones Biológicas (CIB); School of Microbiology. Universidad De Antioquia, Medellín, Colombia
Contribution: Formal analysis (equal), Investigation (supporting), Validation (equal), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Carmiña Gartner
Grupo De Investigación Ciencia De Los Materiales, Sede de Investigación Universitaria, SIU, Universidad De Antioquia, Medellín, Colombia
Correspondence
Carmiña Gartner, Grupo De Investigación Ciencia De Los Materiales, Sede de Investigación Universitaria, SIU, Universidad De Antioquia, Calle 70 N° 52-21, Medellín 05001000, Colombia.
Email: [email protected]
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Project administration (lead), Resources (lead), Supervision (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorMaría del Pilar Maya
Grupo De Investigación Ciencia De Los Materiales, Sede de Investigación Universitaria, SIU, Universidad De Antioquia, Medellín, Colombia
Contribution: Conceptualization (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (equal), Writing - original draft (lead), Writing - review & editing (supporting)
Search for more papers by this authorSusana Torres
Cellular and Molecular Biology Unit; Corporación Para Investigaciones Biológicas (CIB); School of Microbiology. Universidad De Antioquia, Medellín, Colombia
Contribution: Formal analysis (equal), Investigation (supporting), Validation (equal), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Carmiña Gartner
Grupo De Investigación Ciencia De Los Materiales, Sede de Investigación Universitaria, SIU, Universidad De Antioquia, Medellín, Colombia
Correspondence
Carmiña Gartner, Grupo De Investigación Ciencia De Los Materiales, Sede de Investigación Universitaria, SIU, Universidad De Antioquia, Calle 70 N° 52-21, Medellín 05001000, Colombia.
Email: [email protected]
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Project administration (lead), Resources (lead), Supervision (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorAbstract
In this work, non-isocyanate polyurethane (NIPU) films are synthesized from sunflower oil (SFO) with the object of using a renewable resource and establishing a nonpolluting process. SFO also has the advantage of having a higher level of unsaturation than other commercial oils, which provides more reactive sites to be chemically modified. This feature enables a higher degree of conversion to the two monomers, cyclocarbonate, and polyamine-polyol. NIPU is obtained from their mixture and further crosslinking at 90°C allows the films with suitable mechanical properties to be used in biomedical applications. However, NIPU does not show antibacterial activity, so the surface must be modified. Two methods are used: layer-by-layer coating of alginate-chitosan, and immersion in tea tree oil (TTO), previously activating the surface with acrylic acid (AANIPU). Surface modifications are confirmed by increased hydrophilicity, thermochemical changes, and a drop in mechanical performance. TTO on NIPU films inhibits bacterial growth against S. aureus and E. Coli. NIPU and AANIPU can be accepted as noncytotoxic, while incorporation of the two agents can produce cytotoxicity. No previous reports of such modifications have been found on NIPU films, which appear as promising alternatives for biomedical applications.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app55181-sup-0001-FgureS1.pngPNG image, 70.4 KB | Figure S1: FTIR spectra of modifying agents: (a) Acrylic acid. (b) Chitosan. (c) Sodium alginate. (d) Tea tree oil (TTO). |
app55181-sup-0002-FgureS2.pngPNG image, 328.5 KB | Figure S2: Results of glass transition measurements by DSC of NIPU precursors and films before and after different surface treatments. |
app55181-sup-0003-FgureS3.pngPNG image, 687.1 KB | Figure S3: TGA results for SFO-based precursors, CSFO and PAPO, for the NIPU film and after the treatments with acrylic acid, chitosan-alginate, and tea tree oil. |
app55181-sup-0004-FgureS4.pngPNG image, 26.7 KB | Figure S4: Comparison of strain–stress curves for unmodified NIPU and the surface modified samples: AANIPU, TTONIPU and AL-CSNIPU. |
app55181-sup-0005-TableS1.docxWord 2007 document , 55.9 KB | Table S1: N1s curve fitting results of XPS for different NIPU films. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1H. Gholami, H. Yeganeh, Eur. Polym. J. 2021, 142, 110142.
- 2J. Catalá, I. Guerra, J. M. García-Vargas, M. J. Ramos, M. T. García, J. F. Rodríguez, Polymer 2023, 15, 1589.
- 3K. Błażek, J. Datta, Crit. Rev. Environ. Sci. Technol. 2019, 49, 173.
- 4K. Górski, R. Smigins, J. Matijošius, A. Rimkus, R. Longwic, Energies. 2022, 15, 4133.
- 5L. Poussard, J. Mariage, B. Grignard, C. Detrembleur, C. Jérôme, C. Calberg, B. Heinrichs, D. J. Winter, P. Gerbaux, J.-M. Raquez, L. Bonnaud, P. Dubois, Macromolecules 2016, 49, 2162.
- 6S. Doley, S. K. Dolui, Eur. Polym. J. 2018, 102, 161.
- 7V. Aomchad, À. Cristòfol, F. Della Monica, B. Limburg, V. D'Elia, A. W. Kleij, Green Chem. 2021, 23, 1077.
- 8C. V. Rajput, N. V. Sastry, N. P. J. Chikhaliya, Polym. Res. 2023, 30, 159.
- 9M. A. Sawpan, J. Polym. Res. 2018, 25, 184.
- 10M. A. Asare, P. Kote, S. Chaudhary, F. M. de Souza, R. K. Gupta, Polymer 2022, 14, 5282.
- 11M. H. Masuchi, K. M. Gandra, A. L. Marangoni, C. De Sá Perenha, M. C. Chiu, R. Grimaldi, L. A. G. Gonçalves, J. Am. Oil Chem. Soc. 2014, 91, 859.
- 12T. Saurabh, Int. J. Adv. Eng. Technol. 2011, 2, 491.
- 13M. Morales-González, K. Navas-Gómez, L. E. Diaz, J. A. Gómez-Tejedor, M. F. Valero, Polymer 2023, 15, 3733.
- 14L.-C. Xu, C. A. Siedlecki, Advances in Polyurethane Biomaterials, Elsevier, London 2016, p. 247.
10.1016/B978-0-08-100614-6.00009-3 Google Scholar
- 15F. Kara, E. A. Aksoy, Z. Yuksekdag, N. Hasirci, S. Aksoy, Carbohydr. Polym. 2014, 112, 39.
- 16S. Agnihotri, N. K. Dhiman, A. Tripathi, Handbook of Antimicrobial Coatings, Elsevier, London 2018, p. 435.
10.1016/B978-0-12-811982-2.00020-2 Google Scholar
- 17N. Hasirci, E. A. Aksoy, High Perform. Polym. 2007, 19, 621.
- 18Y. Zhu, C. Gao, J. Guan, J. Shen, J. Mater. Sci. Mater. Med. 2004, 15, 283.
- 19Y. Feng, H. Zhao, M. Behl, A. Lendlein, J. Guo, D. Yang, J. Mater. Sci. Mater. Med. 2013, 24, 61.
- 20S. G. Kou, L. Peters, M. Mucalo, Carbohydr. Polym. 2022, 282, 119132.
- 21J. M. Yang, H. T. Lin, T. H. Wu, C. Chen, J. Appl. Polym. Sci. 2003, 90, 1331.
- 22Z. Wang, X. Zhang, J. Gu, H. Yang, J. Nie, G. Ma, Carbohydr. Polym. 2014, 103, 38.
- 23X. Wang, Y.-T. Pan, J.-T. Wan, D.-Y. Wang, RSC Adv. 2014, 4, 46164.
- 24S. Meng, Z. Liu, L. Shen, Z. Guo, L. L. Chou, W. Zhong, Q. Du, J. Ge, Biomaterials 2009, 30, 2276.
- 25N. Bahrami, S. Nouri Khorasani, H. Mahdavi, S. Khalili, J. Appl. Polym. Sci. 2020, 137, 49417.
- 26N. Pazyar, R. Yaghoobi, N. Bagherani, A. Kazerouni, Int. J. Dermatol. 2013, 52, 784.
- 27V. Vivcharenko, A. Przekora, Appl. Sci. 2021, 11, 4114.
- 28Z. Mozaffari, M.-M. A. Nikje, A. Peymani, Mater. Today Commun. 2022, 32, 104171.
- 29A. E.-A. A. El-Wakil, H. Moustafa, A. M. Youssef, J. Thermoplast. Compos. Mater. 2022, 35, 938.
- 30M. R. Kasaai, Carbohydr. Polym. 2007, 68, 477.
- 31X. Jiang, L. Chen, W. Zhong, Carbohydr. Polym. 2003, 54, 457.
- 32N. Babanejad, A. Farhadian, I. Omrani, M. R. Nabid, Mater. Sci. Eng. C 2017, 78, 59.
- 33M. T. Benaniba, N. Belhaneche-Bensemra, G. Gelbard, Energy Educ. Sci. Technol. 2008, 21, 71.
- 34J. M. Yelwa, S. Abdullahi, Int. J. Sci. Res. Chem. 2019, 4, 1.
- 35 ASTM Standard Test Method for Determination of the Iodine Value of Fats and Oils D5554-15. ASTM International, West Conshohocken, PA 2015.
- 36S. Kumar, S. K. Samal, S. Mohanty, S. K. Nayak, Ind. Eng. Chem. Res. 2017, 56, 687.
- 37 Norma Técnica Colombiana Plásticos, Aceites Vegetales Epoxidados de Soya y Linaza, NTC, Bogotá, Colombia 2000 2366, 2000.
- 38Z. Wang, X. Zhang, R. Wang, H. Kang, B. Qiao, J. Ma, L. Zhang, H. Wang, Macromolecules 2012, 45, 9010.
- 39 ASTM Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method, D2074-07. ASTM International, West Conshohocken, PA 2007.
- 40T. Aung, C. A. Liberko, J. Chem. Educ. 2014, 91, 939.
- 41V. Costamagna, D. Wunderlin, M. Larrañaga, I. Mondragon, M. Strumia, J. Appl. Polym. Sci. 2006, 102, 2254.
- 42Z. Ma, C. Gao, J. Yuan, J. Ji, Y. Gong, J. Shen, J. Appl. Polym. Sci. 2002, 85, 2163.
- 43H. A. Khonakdar, J. Morshedian, U. Wagenknecht, S. H. Jafari, Polymer 2003, 44, 4301.
- 44J. Hudzicki, Kirby-Bauer Disk Diffusion Susceptibility Test Protocol, American Society for Microbiology, Washington, DC 2009.
- 45M. A. Javaid, K. M. Zia, R. A. Khera, S. Jabeen, I. Mumtaz, M. A. Younis, M. Shoaib, I. A. Bhatti, Int. J. Biol. Macromol. 2019, 129, 116.
- 46L. F. Johnson, J. N. Shoolery, Anal. Chem. 1962, 34, 1136.
- 47A. S. A. Hazmi, M. M. Aung, L. C. Abdullah, M. Z. Salleh, M. H. Mahmood, Ind. Crops Prod. 2013, 50, 563.
- 48A. Farhadian, A. Ahmadi, I. Omrani, A. B. Miyardan, M. A. Varfolomeev, M. R. Nabid, Polym. Degrad. Stab. 2018, 155, 111.
- 49G. L. Wilkes, S. Sohn, B. Tamami, Virginia Tech, United States 074352 A2. 2004.
- 50R. Srivastava, D. Srinivas, P. Ratnasamy, J. Catal. 2005, 233, 1.
- 51I. Omrani, A. Farhadian, N. Babanejad, H. K. Shendi, A. Ahmadi, M. R. Nabid, Eur. Polym. J. 2016, 82, 220.
- 52H. A. J. Aerts, P. A. Jacobs, J. Am. Oil Chem. Soc. 2004, 81, 841.
- 53R. Mungroo, N. C. Pradhan, V. V. Goud, A. K. Dalai, J. Am. Oil Chem. Soc. 2008, 85, 887.
- 54E. Goicoechea, M. D. Guillen, J. Agric. Food Chem. 2010, 58, 6234.
- 55S. Doley, V. Agarwal, A. Bora, D. Borah, S. K. Dolui, Polym. Compos. 2019, 40, E1120.
- 56E. Abbasi, M. Vatankhah, Y. Hosseini, M. Amin Ariana, M. Ayazi, J. Appl. Polym. Sci. 2013, 128, 4023.
- 57H. Blattmann, R. Mülhaupt, Green Chem. 2016, 18, 2406.
- 58S. Miao, L. Sun, P. Wang, R. Liu, Z. Su, S. Zhang, Eur. J. Lipid Sci. Technol. 2012, 114, 1165.
- 59F. Camara, S. Benyahya, V. Besse, G. Boutevin, R. Auvergne, B. Boutevin, S. Caillol, Eur. Polym. J. 2014, 55, 17.
- 60M. Sangermano, N. Razza, Express Polym. Lett. 2019, 13, 135.
- 61L. Feng, H. Yang, X. Dong, H. Lei, D. Chen, J. Appl. Polym. Sci. 2018, 135, 45886.
- 62C. Oliver Urrutia, R. Rosales-Ibáñez, M. V. Dominguez García, J. Flores-Estrada, M. V. Flores-Merino, J. Biomater. Appl. 2020, 34, 998.
- 63M. Fernandes Queiroz, K. Melo, D. Sabry, G. Sassaki, H. Rocha, Mar. Drugs 2014, 13, 141.
- 64R. Pereira, A. Tojeira, D. C. Vaz, A. Mendes, P. Bártolo, Int. J. Polym. Anal. Charact. 2011, 16, 449.
- 65M. Mielczarek, J. Marchewka, K. Kowalski, Ł. Cieniek, M. Sitarz, T. Moskalewicz, Appl. Surf. Sci. 2023, 609, 155266.
- 66G. Rytwo, R. Zakai, B. Wicklein, J. Spectrosc. 2015, 2015, 1.
10.1155/2015/727595 Google Scholar
- 67S. Jiang, T. Zhao, Y. Wei, Z. Cao, Y. Xu, J. Wei, F. Xu, H. Wang, X. Shao, Food Hydrocolloids 2021, 121, 107037.
- 68O. Seifunnisha, R. Swathi, J. Shanthi, Polym. Polym. Compos. 2021, 29, S622.
- 69C.-H. Cheng, H.-C. J.-C. Liu, Lin, Polymers. 2021, 13, 2321.
- 70K. Bazaka, M. V. Jacob, V. K. Truong, F. Wang, W. A. A. Pushpamali, J. Y. Wang, A. V. Ellis, C. C. Berndt, R. J. Crawford, E. P. Ivanova, Biomacromolecules 2010, 11, 2016.
- 71M. J. Genet, C. C. Dupont-Gillain, P. G. Rouxhet, Medical Applications of Colloids, Springer, New York, NY 2008.
- 72M. Smith, L. Scudiero, J. Espinal, J.-S. McEwen, M. Garcia-Perez, Carbon 2016, 110, 155.
- 73C. Vilani, D. E. Weibel, R. R. M. Zamora, A. C. Habert, C. A. Achete, Appl. Surf. Sci. 2007, 254, 131.
- 74R. M. P. Da Silva, P. M. López-Pérez, C. Elvira, J. F. Mano, J. S. Román, R. L. Reis, Biotechnol. Bioeng. 2008, 101, 1321.
- 75E. Yadav, S. Kumar, S. Mahant, S. Khatkar, R. Rao, J. Essent. Oil Res. 2017, 29, 201.
- 76J. Yuan, L. Chen, X. Jiang, J. Shen, S. Lin, Colloids Surf., B 2004, 39, 87.
- 77M. Ghasemlou, F. Daver, E. P. Ivanova, R. Brkljaca, B. Adhikari, Carbohydr. Polym. 2020, 246, 116656.
- 78G. Fundueanu, M. Constantin, P. Ascenzi, Acta Biomater. 2009, 5, 363.
- 79I. Javni, D. P. Hong, Z. S. Petrović, J. Appl. Polym. Sci. 2013, 128, 566.
- 80H. Blattmann, M. Fleischer, M. Bähr, R. Mülhaupt, Macromol. Rapid Commun. 2014, 35, 1238.
- 81K. M. Doll, S. Z. Erhan, Green Chem. 2005, 7, 849.
- 82C. Carré, L. Bonnet, L. Avérous, RSC Adv. 2014, 4, 54018.
- 83Y. Ren, H. Pan, L. Li, J. Xia, Y. Yang, J. Appl. Polym. Sci. 2005, 98, 1814.
- 84K. Błażek, P. Kasprzyk, J. Datta, Polymer 2020, 205, 122768.
- 85Z. Karami, K. Kabiri, M. J. J. Zohuriaan-Mehr, CO2 Util. 2019, 34, 558.
- 86S. Das, S. Kumar, S. Mohanty, S. K. Nayak, Sustainable Polymer Composites and Nanocomposites. Springer, New York 2019, p. 1121.
10.1007/978-3-030-05399-4_39 Google Scholar
- 87M. Zhang, H. Pan, L. Zhang, L. Hu, Y. Zhou, Ind. Crops Prod. 2014, 59, 135.
- 88A. P. Martínez-Camacho, M. O. Cortez-Rocha, J. M. Ezquerra-Brauer, A. Z. Graciano-Verdugo, F. Rodriguez-Félix, M. M. Castillo-Ortega, M. S. Yépiz-Gómez, M. Plascencia-Jatomea, Carbohydr. Polym. 2010, 82, 305.
- 89S. Arévalo-Alquichire, C. Ramírez, L. Andrade, Y. Uscategui, L. E. Diaz, J. A. Gómez-Tejedor, A. Vallés-Lluch, M. F. Valero, J. Elastomers Plast. 2018, 50, 419.
- 90G. Lin, H. Chen, H. Zhou, X. Zhou, H. Xu, Materials 2018, 11, 710.
- 91M. Kathalewar, A. Sabnis, D. D'Mello, Eur. Polym. J. 2014, 57, 99.
- 92J. Guan, Y. Song, Y. Lin, X. Yin, M. Zuo, Y. Zhao, X. Tao, Q. Zheng, Ind. Eng. Chem. Res. 2011, 50, 6517.
- 93S. J. Xie, H. J. Qian, Z. Y. Lu, J Chem Phys. 2015, 142, 074902.
- 94S. Esposito, S. Noviello, S. Leone, Curr. Opin. Infect. Dis. 2016, 29, 109.
- 95F. Siedenbiedel, J. C. Tiller, Polymer 2012, 4, 46.
- 96G. Gratzl, S. Walkner, S. Hild, A. W. Hassel, H. K. Weber, C. Paulik, Colloids Surf., B 2015, 126, 98.
- 97N. Esmaeili, M. J. Zohuriaan-Mehr, A. Salimi, M. Vafayan, W. Meyer, Thermochim. Acta 2018, 664, 64.
- 98P. Thevenot, W. Hu, L. Tang, Curr. Top. Med. Chem. 2008, 8, 270.
- 99C. Wiegand, T. Hansen, J. Köhnlein, I. Exner, M. Damisch-Pohl, P. Schott, U. Krühner-Wiesenberger, U. C. Hipler, E. Pohlen, J. Text. Inst. 2018, 109, 891.