Design and preparation of durable anti-icing polysilazane coatings with abrasion and UV resistance
Jian Kuang
School of Materials Science and Engineering, Shanghai University, Shanghai, People's Republic of China
Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
Contribution: Conceptualization (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorXiaowei An
Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, People's Republic of China
Contribution: Conceptualization (equal), Writing - review & editing (equal)
Search for more papers by this authorCongshu Huang
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, People's Republic of China
Contribution: Funding acquisition (supporting)
Search for more papers by this authorCorresponding Author
Hongfei Chen
School of Materials Science and Engineering, Shanghai University, Shanghai, People's Republic of China
Correspondence
Chunyan Wei, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, People's Republic of China.
Email: [email protected]
Hongfei Chen, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
Email: [email protected]
Contribution: Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Chunyang Wei
Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, People's Republic of China
Correspondence
Chunyan Wei, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, People's Republic of China.
Email: [email protected]
Hongfei Chen, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
Email: [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorJian Kuang
School of Materials Science and Engineering, Shanghai University, Shanghai, People's Republic of China
Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
Contribution: Conceptualization (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorXiaowei An
Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, People's Republic of China
Contribution: Conceptualization (equal), Writing - review & editing (equal)
Search for more papers by this authorCongshu Huang
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, People's Republic of China
Contribution: Funding acquisition (supporting)
Search for more papers by this authorCorresponding Author
Hongfei Chen
School of Materials Science and Engineering, Shanghai University, Shanghai, People's Republic of China
Correspondence
Chunyan Wei, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, People's Republic of China.
Email: [email protected]
Hongfei Chen, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
Email: [email protected]
Contribution: Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Chunyang Wei
Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, People's Republic of China
Correspondence
Chunyan Wei, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, People's Republic of China.
Email: [email protected]
Hongfei Chen, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
Email: [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorFunding information: Natural Science Foundation of Jiangsu Province, Grant/Award Number: BK20130296; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Grant/Award Number: SDGC2203; State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute, Grant/Award Number: KF190407
Abstract
This work developed a method to enhance the durability of anti-icing performance of a coating to endure abrasion and UV exposure, through grafting functional polydimethylsiloxane (PDMS) to TiO2 particles and further reacting with polysilazane (PSZ) pre-polymer. This method remarkably improved the anti-icing properties of PSZ-based coatings evaluated by freezing delay time and ice removal shear strength. After either surface abrasion for 50 cycles or UV exposure for 100 h, the modified coatings exhibited ice shear strength increase by only 10.44 and 6.44 kPa respectively, significantly lower comparing to that of the coatings containing 30% TiO2 with no PDMS modification (29.69 and 11.88 kPa, respectively). Such strengthened durability of anti-icing performance is attributed to the PDMS molecules bridging PSZ rigid segments and TiO2 compositions, which formed a hydrophobic cross-linking network structure. The durable anti-icing technique developed herein shall appeal to many outdoor applications of facilities and infrastructures.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app53416-sup-0001-Appendix_A.docxWord 2007 document , 2.4 MB | Appendix S1. Supplementary material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1T. Bartels-Rausch, Nature 2013, 494, 27.
- 2K. X. Wei, Y. Yang, H. Y. Zuo, D. Q. Zhong, Wind Energy. 2020, 23, 433.
- 3F. Autelitano, S. Longo, F. Giuliani, Constr. Build. Mater. 2022, 319, 126082.
- 4R. Kozak, B. D. Wiltshire, M. A. R. Khandoker, K. Golovin, M. H. Zarifi, ACS Appl. Mater. Interfaces 2020, 12, 55483.
- 5S. Heydarian, R. Jafari, G. Momen, Prog. Org. Coat. 2021, 151, 106096.
- 6W. Li, Y. L. Zhan, S. R. Yu, Prog. Org. Coat. 2021, 152, 106117.
- 7Z. Q. Dong, M. F. Schumann, M. J. Hokkanen, B. Chang, A. Welle, Q. Zhou, R. H. A. Ras, Z. L. Xu, M. Wegener, P. A. Levkin, Adv. Mater. 2018, 30, 1803890.
- 8Y. Xie, H. Chen, Y. Shen, J. Tao, M. Jin, Y. Wu, W. Hou, J. Bionic Eng. 2019, 16, 27.
- 9A. Gaddam, H. Sharma, T. Karkantonis, S. Dimov, Appl. Surf. Sci. 2021, 552, 149443.
- 10F. L. Heale, I. P. Parkin, C. J. Carmalt, ACS Appl. Mater. Interfaces 2019, 11, 41804.
- 11S. A. Kulinich, S. Farhadi, K. Nose, X. W. Du, Langmuir 2011, 27, 25.
- 12J. Zhang, S. Liu, Y. Huang, Y. Lv, M. Kong, G. Li, Prog. Org. Coat. 2021, 150, 106002.
- 13P. H. L. Mehran Ghasemlou, F. Daver, B. J. Murdoch, E. P. Ivanova, B. Adhikari, ACS Appl. Mater. Interfaces 2021, 13, 36558.
- 14Y. Zhang, H. Guo, J. Gao, W. Wei, M. Liu, C. Zheng, P. Deng, Prog. Org. Coat. 2021, 151, 106089.
- 15C. P. Zhou, X. Zhao, X. Y. Zhao, H. Li, S. X. Zhang, W. Feng, Y. M. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 53494.
- 16S. H. Gao, B. Liu, J. Peng, K. Y. Zhu, Y. H. Zhao, X. H. Li, X. Y. Yuan, ACS Appl. Mater. Interfaces 2019, 11, 4654.
- 17C. H. Moon, S. Yasmeen, K. Park, H. Gaiji, C. Chung, H. Kim, H. S. Moon, J. W. Choi, H. B. R. Lee, ACS Appl. Mater. Interfaces 2022, 14, 3334.
- 18S. Nakamura, J. A. Luna, H. Kakiuchida, A. Hozumi, Langmuir 2021, 37, 11771.
- 19Y. Wang, Y. Fan, P. Zhang, L. M. Tian, J. N. Xu, S. C. Niu, L. Q. Ren, J. Zhao, W. H. Ming, Prog. Org. Coat. 2021, 154, 106170.
- 20G. Barroso, M. Doering, A. Horcher, A. Kienzle, G. Motz, Adv. Mater. Interfaces 2020, 7, 1901952.
- 21M. L. Liu, Y. F. Luo, D. M. Jia, Chem. Eng. J. 2019, 368, 18.
- 22Y. Zhan, R. Grottenmuller, W. Li, F. Javaid, R. Riedel, J. Appl. Polym. Sci. 2021, 138, 50469.
- 23Y. Hou, G. D. Zhu, J. Cui, N. N. Wu, B. T. Zhao, J. Xu, N. Zhao, J. Am. Chem. Soc. 2022, 144, 436.
- 24H. Zhao, W. C. Gao, Q. Li, M. R. Khan, G. H. Hu, Y. Liu, W. Wu, C. X. Huang, R. K. Y. Li, Adv. Colloid Interf. Sci. 2022, 303, 102644.
- 25A. Elzaabalawy, S. A. Meguid, Chem. Eng. J. 2020, 398, 125403.
- 26H. Alamri, A. Al-Shahrani, E. Bovero, T. Khaldi, G. Alabedi, W. Obaid, I. Al-Taie, A. Fihri, J. Colloid Interface Sci. 2018, 513, 349.
- 27S. Naderizadeh, A. Athanassiou, I. S. Bayer, J. Colloid Interface Sci. 2018, 519, 285.
- 28W. C. Gao, W. Wu, C. Z. Chen, H. Zhao, Y. Liu, Q. Li, C. X. Huang, G. H. Hu, S. F. Wang, D. Shi, Q. C. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 1874.
- 29X. Tan, Y. Wang, Z. Huang, S. Sabin, T. Xiao, L. Jiang, X. Chen, Adv. Mater. Interfaces 2021, 8, 2002209.
- 30Y. Qi, Z. Yang, T. Chen, Y. Xi, J. Zhang, Appl. Surf. Sci. 2020, 501, 144165.
- 31E. J. Y. Ling, V. Uong, J. S. Renault-Crispo, A. M. Kietzig, P. Servio, ACS Appl. Mater. Interfaces 2016, 8, 8789.
- 32Z. W. He, E. T. Vagenes, C. Delabahan, J. Y. He, Z. L. Zhang, Sci. Rep. 2017, 7, 42181.
- 33Y. Y. Wang, J. Xue, Q. J. Wang, Q. M. Chen, J. F. Ding, ACS Appl. Mater. Interfaces 2013, 5, 3370.
- 34J. Yang, Y. Muhammad, C. L. Yang, Y. Liu, Z. B. Su, Y. H. Wei, J. Li, Constr. Build. Mater. 2021, 276, 121461.
- 35W. Y. Ji, T. T. Li, S. B. Cheng, L. F. Feng, X. P. Gu, C. L. Zhang, G. H. Hu, AIChE J 2022, 68, 17835.
- 36G. H. Hu, H. X. Li, L. F. Feng, Macromolecules 2002, 35, 8247.
- 37H. Cartier, G. H. Hu, Polym. Eng. Sci. 1998, 38, 177.
- 38J. Avossa, A. Bifulco, E. Amendola, F. Gesuele, S. L. Oscurato, Y. Gizaw, G. Mensitieri, F. Branda, Appl. Surf. Sci. 2019, 465, 73.
- 39F. Piscitelli, F. Tescione, L. Mazzola, G. Bruno, M. Lavorgna, Appl. Surf. Sci. 2019, 472, 71.
- 40Y. L. Xi, Y. L. Qi, Z. P. Mao, Z. B. Yang, J. Zhang, Constr. Build. Mater. 2021, 266, 120916.
- 41H. D. Cheng, G. Y. Yang, D. Li, M. R. Li, Y. Cao, Q. Fu, Y. Y. Sun, Langmuir 2021, 37, 12016.
- 42G. Chaudhary, R. Li, Exp. Thermal Fluid Sci. 2014, 57, 86.
- 43H. Zhao, D. Huang, T. H. Hao, G. H. Hu, G. B. Ye, T. Jiang, Q. C. Zhang, New J. Chem. 2017, 41, 9268.
- 44W. Xu, R. Y. Zhang, W. Liu, J. Zhu, X. Dong, H. X. Guo, G. H. Hu, Macromolecules 2016, 49, 5931.
- 45Q. T. Fu, X. H. Wu, D. Kumar, J. W. C. Ho, P. D. Kanhere, N. Srikanth, E. J. Liu, P. Wilson, Z. Chen, ACS Appl. Mater. Interfaces 2014, 6, 20685.
- 46H. Idriss, O. Guselnikova, P. Postnikov, Z. Kolska, P. Hausild, J. Cech, O. Lyutakov, V. Svorcik, ACS Appl. Polym. Mater. 2020, 2, 977.
- 47G. V. Kuznetsov, A. G. Islamova, E. G. Orlova, A. S. Ivashutenko, I. I. Shanenkov, I. Y. Zykov, D. V. Feoktistov, Surf. Coat. Technol. 2021, 422, 127518.
- 48S. Fukuda, D. Chaussy, M. N. Belgacem, N. Reverdy-Bruas, W. Thielemans, Appl. Surf. Sci. 2013, 277, 57.
- 49Y. Z. Zhuo, S. B. Xiao, A. Amirfazli, J. Y. He, Z. L. Zhang, Chem. Eng. J. 2021, 405, 127088.
- 50H. Wang, G. G. He, Q. Q. Tian, Appl. Surf. Sci. 2012, 258, 7219.