Morphology biased pharmacological and mechanical properties of nanosized block copolymers of PNIPAM with polyethylene oxide and polyaminoacids in presence of polycaprolactone
Debasrita Bharatiya
Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorBiswajit Parhi
Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal)
Search for more papers by this authorCorresponding Author
Sarat K. Swain
Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
Correspondence
Sarat K. Swain, Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
Email: [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Project administration (lead), Supervision (lead)
Search for more papers by this authorDebasrita Bharatiya
Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorBiswajit Parhi
Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal)
Search for more papers by this authorCorresponding Author
Sarat K. Swain
Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
Correspondence
Sarat K. Swain, Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
Email: [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Project administration (lead), Supervision (lead)
Search for more papers by this authorAbstract
This work targets to develop amphiphilic self-assembled PEO-b-PAAs-b-PNIPAM and PEO-b-PAAs-b-PNIPAM@PCL nanosized block copolymers (NBCPs) of poly N-isopropyl acrylamide (PNIPAM) with polyethylene oxide (PEO), and poly amino acids (PAAs) with and without polycaprolactone (PCL) via ring-opening and condensation polymerization methods. The interesting ring necklace and petunia bell-shaped flower-like morphology play an important role in both mechanical behavior and pharmacological actions. The PEO-b-PAAs-b-PNIPAM@PCL NBCP exhibits a notable antibacterial activity against gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) with ZOI of 20 ± 4 mm and 18 ± 3 mm, respectively, with MIC 250 μg/ml. The mechanical properties of the NBCPs are measured at room temperature. The PEO-b-PAAs-b-PNIPAM@PCL NBCP possesses a higher value in each case compared to the neat polymer with the UTS 1.4651 MPa, Y 0.0050 MPa, Tensile strength at yield (1.4048 MPa), TS at break (1.4640 MPa), % elongation at yield (23.5%), elongation % at break (124%) and proportional limit (1.0082 MPa at 8%), respectively. With the improved mechanical strength, effective antibacterial activities along with sustainable drug release rate, the designed material can be used as a potential material for different biomedical applications.
CONFLICT OF INTEREST
The authors declare there is no conflict of interest in publishing this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
Filename | Description |
---|---|
app53389-sup-0001-Supinfo.docWord document, 619.5 KB | Figure S1. a and b represent the average particle size and particle size distribution plot form HRTEM images of PEO-b-PAAs-b-PNIPAM and PEO-b-PAAs-b-PNIPAM@PCL NBCPs, respectively. Figure S2. Reductive Oxygen Stress (ROS) pathways of inhibiting bacterial growth in the presence of designed PEO-b-PAAs-b-PNIPAM and PEO-b-PAAs-b-PNIPAM@PCL NBCPs. Figure S3.a-d represent the release kinetics for the respective CQ, CF, OF, and OZ drugs are represented in respectively Table S1. 1H NMR Table: 1H NMR (500 MHz) taken in CDCl3 solvent. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Z. Wang, X. Jiang, W. Liu, G. Lu, X. Huang, Sci. China Chem. 2019, 62, 889.
- 2C. Feng, X. Huang, Acc. Chem. Res. 2018, 51, 2314.
- 3Y. Que, Y. Liu, W. Tan, C. Feng, P. Shi, Y. Li, H. Xiaoyu, ACS Macro Lett. 2016, 5, 168.
- 4B. Parhi, D. Bharatiya, S. K. Swain, Saudi Pharm. J. 2020, 28, 1719.
- 5D. Bharatiya, S. Patra, B. Parhi, S. K. Swain, Int. J. Polym. Mater. Polym. Biomater. 2021, 1, 1.
- 6R. Chen, J. E. Wulff, M. G. Moffitt, Mol. Pharmaceutics 2018, 15, 4517.
- 7S. Vandewalle, M. Van De Walle, S. Chattopadhyay, F. E. Du Prez, Eur. Polym. J. 2018, 98, 468.
- 8T. Jayaramudu, G. M. Raghavendra, K. Varaprasad, G. V. S. Reddy, A. B. Reddy, K. Sudhakar, E. R. Sadiku, J. Appl. Polym. Sci. 2016, 133, 43027.
- 9K. Nejati-Koshki, M. Mesgari, E. Ebrahimi, F. Abbasalizadeh, S. F. Aval, A. A. Khandaghi, M. Abasi, A. Akbarzadeh, J. Microencapsulation 2014, 31, 815.
- 10T. Q. M. Tran, M. F. Hsieh, K. L. Chang, Q. H. Pho, V. C. Nguyen, C. Y. Cheng, C. M. Huang, Polymers (Basel). 2016, 8, 1.
- 11F. Wang, T. K. Bronich, A. V. Kabanov, R. D. Rauh, J. Roovers, Bioconjugate Chem. 2005, 16, 397.
- 12T. Chen, W. Wu, H. Xiao, Y. Chen, M. Chen, J. Li, ACS Macro Lett. 2016, 5, 55.
- 13S. K. Lee, Y. Park, J. Kim, Appl. Sci. 2018, 8, 1.
- 14S. Kurzhals, M. Schroffenegger, N. Gal, R. Zirbs, E. Reimhult, Biomacromolecules 2018, 19, 1435.
- 15Z. Ayar, M. Shafieian, N. Mahmoodi, O. Sabzevari, Z. Hassannejad, J. Appl. Polym. Sci. 2021, 138, 1.
- 16K. Tauer, D. Gau, S. Schulze, A. Völkel, R. Dimova, Colloid Polym. Sci. 2009, 287, 299.
- 17T. Cai, M. Li, K. G. Neoh, E. T. Kang, J. Mater. Chem. 2012, 22, 16248.
- 18A. S. Zdravković, L. B. Nikolić, S. S. Ilić-Stojanović, V. D. Nikolić, S. R. Savić, A. J. Kapor, Hem. Ind. 2017, 71, 395.
- 19F. Xu, T. T. Yan, Y. L. Luo, J. Bioact. Compat. Polym. 2013, 28, 66.
- 20S. Lv, M. Li, Z. Tang, W. Song, H. Sun, H. Liu, X. Chen, Acta Biomater. 2013, 9, 9330.
- 21S. J. Lee, K. H. Min, H. J. Lee, A. N. Koo, H. P. Rim, B. J. Jeon, S. Y. Jeong, J. S. Heo, S. C. Lee, Biomacromolecules 2011, 12, 1224.
- 22T. Miyazaki, K. Igarashi, Y. Matsumoto, H. Cabral, ACS Biomater. Sci. Eng. 2019, 5, 5727.
- 23L. Wu, Y. Zhang, H. Yu, Y. Jia, X. Wang, B. Ding, Compos. Commun. 2021, 27, 100759.
- 24V. Naveen, A. P. Deshpande, S. Raja, RSC Adv. 2020, 10, 33178.
- 25Z. Xu, C. Lu, C. Lindenberger, Y. Cao, J. E. Wulff, M. G. Moffitt, ACS Omega 2017, 2, 5289.
- 26M. Chausson, A. S. Fluchère, E. Landreau, Y. Aguni, Y. Chevalier, T. Hamaide, N. Abdul-Malak, I. Bonnet, Int. J. Pharm. 2008, 362, 153.
- 27B. Parhi, D. Bharatiya, S. K. Swain, J. Appl. Polym. Sci. 2022, 139, 52116.
- 28T. J. Deming, Chem. Rev. 2016, 116, 786.
- 29F. Wang, T. K. Bronich, A. V. Kabanov, R. D. Rauh, J. Roovers, Bioconjugate Chem. 2008, 19, 1423.
- 30J. Chen, M. Liu, C. Gao, S. Lü, X. Zhang, Z. Liu, RSC Adv. 2013, 3, 15085.
- 31B. C. Yildiz, A. Kayan, Sustain. Chem. Pharm. 2021, 21, 100416.
- 32O. Mert, A. Kayan, Appl. Catal. A Gen. 2013, 464-465, 322.
- 33C. He, X. Zhuang, Z. Tang, H. Tian, X. Chen, Adv. Healthcare Mater. 2012, 1, 48.
- 34S. J. Lam, E. H. H. Wong, C. Boyer, G. G. Qiao, Prog. Polym. Sci. 2018, 76, 40.
- 35A. J. Chancellor, B. T. Seymour, B. Zhao, Anal. Chem. 2019, 91, 6391.
- 36R. Verduzco, X. Li, S. L. Pesek, G. E. Stein, Chem. Soc. Rev. 2015, 44, 2405.
- 37G. Yin, G. Chen, Z. Zhou, Q. Li, RSC Adv. 2015, 5, 33356.
- 38J. Chen, M. Liu, H. Gong, Y. Huang, C. Chen, J. Phys. Chem. B 2011, 115, 14947.
- 39L. Ahmadkhani, M. Abbasian, A. Akbarzadeh, Des. Monomers Polym. 2017, 20, 406.
- 40Z. Duan, L. Zhang, H. Wang, B. Han, B. Liu, I. Kim, React. Funct. Polym. 2014, 82, 47.
- 41P. Bhagabati, T. K. Chaki, D. Khastgir, RSC Adv. 2015, 5, 60294.
- 42C. Amgoth, S. Joshi, Mater. Res. Express 2017, 4, 105306.
- 43M. A. Macchione, C. Biglione, M. Strumia, Polymers (Basel). 2018, 10, 1.
- 44S. Łukasiewicz, A. Mikołajczyk, E. Błasiak, E. Fic, M. Dziedzicka-Wasylewska, Pharmaceutics 2021, 13, 191.
- 45B. Hu, Z. Lian, Z. Zhou, L. Shi, Z. Yu, ACS Appl. Bio Mater. 2020, 3, 5529.
- 46S. W. Kang, Y. Li, J. H. Park, D. S. Lee, Polymer (Guildf). 2013, 54, 102.
- 47A. Ghamkhari, R. Sarvari, M. Ghorbani, H. Hamishehkar, Eur. Polym. J. 2018, 107, 143.
- 48D. Perera, M. Medini, D. Seethamraju, R. Falkowski, K. White, R. M. Olabisi, J. Microencapsulation 2018, 35, 475.
- 49M. Qasim, N. Udomluck, J. Chang, H. Park, K. Kim, Int. J. Nanomed. 2018, 13, 235.
- 50J. Xu, Y. Chen, X. Jiang, Z. Gui, L. Zhang, Processes 2019, 7, 331.
- 51D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, J. Siepmann, Int. J. Pharm. 2006, 314, 198.
- 52H. Chang, Y. Wang, Y. Perrie, A. G. A. Coombes, J. Drug Deliv. Sci. Technol. 2010, 20, 207.
- 53G. Wu, L. Chen, H. Li, C. L. Deng, X. F. Chen, Biomed. Res. Int. 2014, 2014, 1.
- 54L. É. Uhljar, S. Y. Kan, N. Radacsi, V. Koutsos, P. Szabó-Révész, R. Ambrus, Pharmaceutics 2021, 13, 1.
- 55M. A. Haq, Y. Su, D. Wang, Mater. Sci. Eng. C 2017, 70, 842.
- 56X. M. Ma, R. Li, J. Ren, X. C. Lv, X. H. Zhao, Q. Ji, Y. Z. Xia, RSC Adv. 2017, 7, 47767.
- 57K. Kan, D. Moritoh, Y. Matsumoto, K. Masuda, M. Ohtani, K. Kobiro, Nanoscale Res. Lett. 2020, 15, 1.