Hydrogels based on alkylated chitosan and polyelectrolyte copolymers
Daniel A. Palacio
Polymer Department, Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepción, Chile
Search for more papers by this authorBruno F. Urbano
Polymer Department, Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepción, Chile
Search for more papers by this authorCorresponding Author
Bernabé L. Rivas
Polymer Department, Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepción, Chile
Correspondence to: B. L. Rivas (E-mail: [email protected])Search for more papers by this authorDaniel A. Palacio
Polymer Department, Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepción, Chile
Search for more papers by this authorBruno F. Urbano
Polymer Department, Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepción, Chile
Search for more papers by this authorCorresponding Author
Bernabé L. Rivas
Polymer Department, Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepción, Chile
Correspondence to: B. L. Rivas (E-mail: [email protected])Search for more papers by this authorABSTRACT
Hydrogels formed by alkylated chitosan with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride and synthetic copolymers forming polyelectrolyte complexes are presented. The copolymer polyelectrolytes were synthesized through free-radical polymerization. Their compositions and reactivity parameters were determined by the Finemann–Ross and Kelen–Tüdos methods. The copolymers have structures that tend to be alternating. The hydrogels were characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy, and water solubility tests at different pH values. For the formation of the hydrogels, they were prepared using different molar ratios of alkylated chitosan and polyelectrolyte copolymers. Their stability was determined by rheological analysis, evaluating the response as a function of strain and frequency. The rheological tests showed that the stability of the polyelectrolyte complexes followed the trend ChT-CP2 > ChT-CP3 > ChT-CP1 due to the presence of greater electrostatic interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46556.
REFERENCES
- 1 Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. J. Mater. Chem. B 2015, 3, 3654.
- 2 Ye, L.; Zhang, Y.; Wang, Q.; Zhou, X.; Yang, B.; Ji, F.; Dong, D.; Gao, L.; Cui, Y.; Yao, F. ACS Appl. Mater. Interfaces 2016, 8, 15710.
- 3 Ma, S.; Yu, B.; Pei, X.; Zhou, F. Polymer 2016, 98, 516.
- 4 Rinaudo, M. Macromol. Symp. 2006, 245–246, 549.
- 5 Sagou, J.-P. S.; Ahualli, S.; Thomas, F. J. Colloid Interface Sci. 2015, 459, 212.
- 6 Argin-Soysal, S.; Kofinas, P.; Lo, Y. M. Food Hydrocoll. 2009, 23, 202.
- 7 Prajapati, B. G.; Sawant, K. K. Int. J. ChemTech Res. 2009, 1, 643.
- 8 Lee, K. Y.; Mooney, D. J. Prog. Polym. Sci. 2012, 37, 106.
- 9 da Costa, M. P. M.; de Mello Ferreira, I. L.; de Macedo Cruz, M. T. Carbohydr. Polym. 2016, 146, 123.
- 10 You, J.; Xie, S.; Cao, J.; Ge, H.; Xu, M.; Zhang, L.; Zhou, J. Macromolecules 2016, 49, 1049.
- 11 Gonsalves, A.; de, A.; Araújo, C. R. M.; Soares, N. A.; Goulart, M. O. F.; Abreu, F. C. D. Quím. Nova 2011, 34, 1215.
- 12 Neufeld, L.; Bianco-Peled, H. Int. J. Biol. Macromol. 2017, 101, 852.
- 13
Montaser, A. J. Appl. Pharm. Sci. 2016, 001.
10.7324/JAPS.2016.60501 Google Scholar
- 14 Jiang, X.; Xiang, N.; Wang, J.; Zhao, Y.; Hou, L. Carbohydr. Polym. 2017, 173, 701.
- 15 Bercea, M.; Bibire, E.-L.; Morariu, S.; Carja, G. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 628.
- 16 Zhu, F.; Yu, H.; Lei, W.; Ren, K.; Qian, J.; Wu, Z.; Zheng, Q. Chin. J. Polym. Sci. 2017, 35, 1276.
- 17 Puppi, D.; Migone, C.; Morelli, A.; Bartoli, C.; Gazzarri, M.; Pasini, D.; Chiellini, F. J. Bioact. Compat. Polym. 2016, 31, 531.
- 18 de Britto, D.; Assis, O. B. G. Carbohydr. Polym. 2007, 69, 305.
- 19 Rosa, S.; Laranjeira, M. C. M.; Riela, H. G.; Fávere, V. T. J. Hazard. Mater. 2008, 155, 253.
- 20 Mohamed, R. R.; Elella, M. H. A.; Sabaa, M. W. Int. J. Biol. Macromol. 2017, 98, 302.
- 21 Facchi, D. P.; Lima, A. C.; de Oliveira, J. H.; Lazarin-Bidóia, D.; Nakamura, C. V.; Canesin, E. A.; Bonafé, E. G.; Monteiro, J. P.; Visentainer, J. V.; Muniz, E. C.; Martins, A. F. Int. J. Biol. Macromol. 2017, 103, 129.
- 22 Giraldo, J. D.; Rivas, B. L.; Elgueta, E.; Mancisidor, A. J. Appl. Polym. Sci. 2017, 134, DOI: 10.1002/app.45511.
- 23 Younes, I.; Ghorbel-Bellaaj, O.; Chaabouni, M.; Rinaudo, M.; Souard, F.; Vanhaverbeke, C.; Jellouli, K.; Nasri, M. Int. J. Biol. Macromol. 2014, 70, 385.
- 24 Sajomsang, W.; Gonil, P.; Saesoo, S. Eur. Polym. J. 2009, 45, 2319.
- 25 Sánchez, J.; Rivas, B. L. Desalination 2011, 279, 338.
- 26 Zhang, Y.; Ye, L.; Cui, M.; Yang, B.; Li, J.; Sun, H.; Yao, F. RSC Adv. 2015, 5, 78180.
- 27 Qin, C.; Xiao, Q.; Li, H.; Fang, M.; Liu, Y.; Chen, X.; Li, Q. Int. J. Biol. Macromol. 2004, 34, 121.
- 28 Brugnerotto, J.; Lizardi, J.; Goycoolea, F. M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. Polymer 2001, 42, 3569.
- 29 Wang, W.; Bo, S.; Li, S.; Qin, W. Int. J. Biol. Macromol. 1991, 13, 281.
- 30
He, X.;
Li, K.;
Xing, R.;
Liu, S.;
Hu, L.;
Li, P. Egypt. J. Aquat. Res. 2016, 42, 75.
10.1016/j.ejar.2015.09.003 Google Scholar
- 31 Kasaai, M. R. J. Agric. Food Chem. 2009, 57, 1667.
- 32 Abdou, E. S.; Nagy, K. S. A.; Elsabee, M. Z. Bioresour. Technol. 2008, 99, 1359.
- 33 Mohamed, R. R.; Elella, M. H. A.; Sabaa, M. W. Int. J. Biol. Macromol. 2015, 80, 149.
- 34 Salama, H. E.; Saad, G. R.; Sabaa, M. W. J. Biomater. Sci. Polym. Ed. 2016, 27, 1880.
- 35 Sajomsang, W.; Tantayanon, S.; Tangpasuthadol, V.; Daly, W. H. Carbohydr. Res. 2009, 344, 2502.
- 36 Xu, Y.; Han, J.; Lin, H. Carbohydr. Polym. 2017, 156, 372.
- 37 Treenate, P.; Monvisade, P. Int. J. Biol. Macromol. 2017, 99, 71.
- 38 Racine, L.; Texier, I.; Auz?ly-Velty, R. Polym. Int. 2017, 66, 981.
- 39 Bhattarai, N.; Gunn, J.; Zhang, M. Adv. Drug Deliv. Rev. 2010, 62, 83.
- 40 Urbano, B.; Rivas, B. L. Polym. Int. 2012, 61, 23.
- 41 Urbano, B. F.; Rivas, B. L.; Martinez, F.; Alexandratos, S. D. React. Funct. Polym. 2012, 72, 642.
- 42 Urbano, B. F.; Paredes, J.; Rivas, B. L.; Kusku, O.; Kabay, N.; Bryjak, M. Environ. Prog. Sustain. Energy 2013, 33, 1187.
- 43 Bune, Y. V.; Barabanova, A. I.; Bogachev, Y. S.; Gromov, V. F. Eur. Polym. J. 1997, 33, 1313.
- 44 Pujari, N. S.; Wang, M.; Gonsalves, K. E. Polymer 2017, 118, 201.
- 45 Hasanzadeh, R.; Moghadam, P. N.; Bahri-Laleh, N.; Ziaee, F. J. Polym. Res. 2016, 23, 150.
- 46 García-Fernández, L.; Aguilar, M. R.; Fernández, M. M.; Lozano, R. M.; Giménez, G.; Valverde, S.; San Román, J. Biomacromolecules 2010, 11, 1763.
- 47 Valle, H.; Rivas, B. L.; Aguilar, M. R.; Román, J. S. J. Appl. Polym. Sci. 2013, 129, 537.
- 48 Smitha, B.; Sridhar, S.; Khan, A. A. Macromolecules 2004, 37, 2233.
- 49 Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Eur. J. Pharm. Biopharm. 2004, 57, 19.
- 50 Chen, Y.; Wang, F.; Zhang, N.; Li, Y.; Cheng, B.; Zheng, Y. Colloids Surf. B: Biointerfaces 2017, 158, 431.
- 51 Khakpour, H.; Abdollahi, M. Polym. Bull. 2017,
- 52
Clark, A. H.;
Ross-Murphy, S. B. In Modern Biopolymer Science; S. Kasapis; I. T. Norton; J. B. Ubbink, Eds.; Academic Press: San Diego, 2009; p 1.
10.1016/B978-0-12-374195-0.00001-X Google Scholar
- 53 Derkach, S. R.; Voron'ko, N. G.; Sokolan, N. I. J. Dispers. Sci. Technol. 2017, 38, 1427.
- 54 Voron'ko, N. G.; Derkach, S. R.; Kuchina, Y. A.; Sokolan, N. I. Carbohydr. Polym. 2016, 138, 265.
- 55 Wang, Y.; Qiu, D.; Cosgrove, T.; Denbow, M. L. Colloids Surf. B: Biointerfaces 2009, 70, 254.