Polymersome formation mechanism and formation rate in stirred-tank reactors
Sarah T. Poschenrieder
Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748 Germany
Search for more papers by this authorMarianne Hanzlik
Electron Microscopy, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748 Germany
Search for more papers by this authorCorresponding Author
Kathrin Castiglione
Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748 Germany
Correspondence to: K. Castiglione (E-mail: [email protected])Search for more papers by this authorSarah T. Poschenrieder
Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748 Germany
Search for more papers by this authorMarianne Hanzlik
Electron Microscopy, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748 Germany
Search for more papers by this authorCorresponding Author
Kathrin Castiglione
Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748 Germany
Correspondence to: K. Castiglione (E-mail: [email protected])Search for more papers by this authorABSTRACT
Uniform polymersomes (polymer vesicles) made of poly(2-methyloxazoline)15-b-poly(dimethylsiloxane)68-b-poly(2-methyloxazoline)15 (PMOXA15–PDMS68–PMOXA15) can be formed in miniaturized-stirred tank reactors by the aid of a recently published process. In this study, the occurring self-assembly mechanism was elucidated by using transmission electron microscopy. Subsequent to the initial formation of small spherical micelles and the following fusion to worm-like micelles, two simultaneously occurring pathways, describing the transformation of further intermediate structures to the desired vesicles, were found. The resulting particle increase was followed by dynamic light scattering. Thus, the vesicle formation rate was judged by the linear increase of the particle diameter over time. While temperature showed no influence, higher initial polymer concentrations and lower final solvent concentrations accelerated the polymersome formation. Besides, the process was crucially dependent on the agitation speed. While spherical micelles did not transform into polymersomes when no stirring or too slow stirring is applied, the self-assembly process was accelerated by increasing the agitation speed. Uniform polymeric vesicles can be formed under vigorous stirring in stirred-tank reactors in short process times. In this study, the underlying mechanisms of vesicle formation were elucidated, showing that the polymer forms small micellar structures before undergoing two separate pathways to form the desired vesicular structures. The formation rate of the polymer vesicles was mainly dependent on the agitation speed but also on the polymer and solvent concentrations, highlighting the need for controlled formation conditions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46077.
REFERENCES
- 1 Discher, D. E.; Eisenberg, A. Science 2002, 297, 967.
- 2 Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323.
- 3 Du, J. Z.; O'Reilly, R. K. Soft Matter 2009, 5, 3544.
- 4
Shen, H.;
Eisenberg, A. Angew. Chem. 2000, 39, 3310.
10.1002/1521-3773(20000915)39:18<3310::AID-ANIE3310>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 5 Luo, L. B.; Eisenberg, A. Langmuir 2001, 17, 6804.
- 6 Soo, P. L.; Eisenberg, A. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 923.
- 7 Zhang, L. F.; Eisenberg, A. Science 1995, 268, 1728.
- 8 Nardin, C.; Meier, W. G. Chimia 2001, 55, 142.
- 9 Nardin, C.; Widmer, J.; Winterhalter, M.; Meier, W. Eur. Phys. J. E 2001, 4, 403.
- 10 Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903.
- 11 Nardin, C.; Hirt, T.; Leukel, J.; Meier, W. Langmuir 2000, 16, 1035.
- 12 Winterhalter, M.; Hilty, C.; Bezrukov, S. M.; Nardin, C.; Meier, W.; Fournier, D. Talanta 2001, 55, 965.
- 13 Klermund, L.; Poschenrieder, S. T.; Castiglione, K. ACS Catal 2017, 7, 3900.
- 14 De Vocht, C.; Ranquin, A.; Willaert, R.; Van Ginderachter, J. A.; Vanhaecke, T.; Rogiers, V.; Versees, W.; Van Gelder, P.; Steyaert, J. J. Control. Release 2009, 137, 246.
- 15 Nallani, M. Ph.D. Thesis, International University Bremen, Bremen, Germany, 2005.
- 16 Nallani, M.; Benito, S.; Onaca, O.; Graff, A.; Lindemann, M.; Winterhalter, M.; Meier, W.; Schwaneberg, U. J. Biotechnol. 2006, 123, 50.
- 17 Meng, F. H.; Zhong, Z. Y.; Feijen, J. Biomacromolecules 2009, 10, 197.
- 18 Egli, S. Ph.D. Thesis, Universität Basel, 2011.
- 19 Uneyama, T. J. Chem. Phys. 2007, 126, 114902.
- 20 Choucair, A. A.; Kycia, A. H.; Eisenberg, A. Langmuir 2003, 19, 1001.
- 21 Antonietti, M.; Forster, S. Adv. Mater. 2003, 15, 1323.
- 22 Bleul, R.; Thiermann, R.; Maskos, M. Macromolecules 2015, 48, 7396.
- 23 Rank, A.; Hauschild, S.; Forster, S.; Schubert, R. Langmuir 2009, 25, 1337.
- 24 He, X. H.; Schmid, F. Macromolecules 2006, 39, 2654.
- 25 Thiele, J.; Chokkalingam, V.; Ma, S. H.; Wilson, D. A.; Huck, W. T. S. Mater. Horiz. 2014, 1, 96.
- 26 Hauschild, S.; Lipprandt, U.; Rumplecker, A.; Borchert, U.; Rank, A.; Schubert, R.; Forster, S. Small 2005, 1, 1177.
- 27 Kita-Tokarczyk, K.; Grumelard, J.; Haefele, T.; Meier, W. Polymer 2005, 46, 3540.
- 28 Bleul, T.; Ruhl, R.; Bulashevska, S.; Karakhanova, S.; Werner, J.; Bazhin, A. V. Mol. Carcinog. 2015, 54, 870.
- 29 Yu, H. Z.; Jiang, W. Macromolecules 2009, 42, 3399.
- 30 Charcosset, C.; Juban, A.; Valour, J.-P.; Urbaniak, S.; Fessi, H. Chem. Eng. Res. Des. 2015, 94, 508.
- 31 Koppel, D. E. J. Chem. Phys. 1972, 57, 4814.
- 32 Thomas, J. C. J. Colloid Interface Sci. 1987, 117, 187.
- 33 Poschenrieder, S. T.; Wagner, S. G.; Castiglione, K. J. Appl. Polym. Sci. 2016, 133, 43274.
- 34 Poschenrieder, S. T.; Schiebel, S. K.; Castiglione, K. Eng. Life Sci. 2017, 17, 58.
- 35 Klermund, L.; Poschenrieder, S. T.; Castiglione, K. J. Nanobiotechnol. 2016, 14, 1.
- 36 Gaitzsch, J.; Huang, X.; Voit, B. Chem. Rev. 2016, 116, 1053.
- 37 Broz, P.; Benito, S. M.; Saw, C.; Burger, P.; Heider, H.; Pfisterer, M.; Marsch, S.; Meier, W.; Hunziker, P. J. Control. Release. 2005, 102, 475.
- 38 Woodle, M. C.; Engbers, C. M.; Zalipsky, S. Bioconjug. Chem. 1994, 5, 493.
- 39 Poschenrieder, S. T.; Schiebel, S. K.; Castiglione, K. Eng. Life Sci. 2017, 0, 1.
- 40 Poschenrieder, S. T.; Klermund, L.; Langer, B.; Castiglione, K. Langmuir 2017, 33, 6011.
- 41 Riedlberger, P.; Weuster-Botz, D. Bioresour. Technol. 2012, 106, 138.
- 42 Riedlberger, P.; Bruning, S.; Weuster-Botz, D. Bioprocess Biosyst. Eng. 2013, 36, 927.
- 43 Habel, J.; Ogbonna, A.; Larsen, N.; Cherre, S.; Kynde, S.; Midtgaard, S. R.; Kinoshita, K.; Krabbe, S.; Jensen, G. V.; Hansen, J. S.; Almdal, K.; Helix-Nielsen, C. RSC Adv. 2015, 5, 79924.
- 44 Noguchi, H.; Takasu, M. Phys. Rev. E 2001, 64, 41913.
- 45 Yamamoto, S.; Maruyama, Y.; Hyodo, S. J. Chem. Phys. 2002, 116, 5842.
- 46 Chen, L.; Shen, H. W.; Eisenberg, A. J. Phys. Chem. B 1999, 103, 9488.
- 47 Du, J. Z.; Chen, Y. M. Macromolecules 2004, 37, 5710.
- 48
Zhang, L. F.;
Eisenberg, A. Polym. Adv. Technol. 1998, 9, 677.
10.1002/(SICI)1099-1581(1998100)9:10/11<677::AID-PAT845>3.0.CO;2-# CAS Web of Science® Google Scholar
- 49 Yu, Y. S.; Zhang, L. F.; Eisenberg, A. Macromolecules 1998, 31, 1144.
- 50 Shen, H.; Eisenberg, A. J. Phys. Chem. B 1999, 103, 9473.
- 51 Luo, L. B.; Eisenberg, A. J. Am. Chem. Soc. 2001, 123, 1012.
- 52 Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.
- 53 Sanson, C.; Schatz, C.; Le Meins, J.-F. O.; Brûlet, A.; Soum, A.; and.; Lecommandoux, S. B. Langmuir 2010, 26, 2751.
- 54 Thiermann, R.; Mueller, W.; Montesinos-Castellanos, A.; Metzke, D.; Löb, P.; Hessel, V.; Maskos, M. Polymer 2012, 53, 2205.
- 55 Farquhar, K. D.; Misran, M.; Robinson, B. H.; Steytler, D. C.; Morini, P.; Garrett, P. R.; Holzwarth, J. F. J. Phys.: Condens. Matter 1996, 8, 9397.
- 56 Lasic, D. D. Biochem. J. 1988, 256, 1.
- 57 Lasic, D. D. J. Colloid Interface Sci. 1988, 124, 428.
- 58 Habel, J.; Ogbonna, A.; Larsen, N.; Schulte, L.; Almdal, K.; Helix-Nielsen, C. J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 699.
- 59 Wang, W.; McConaghy, A. M.; Tetley, L.; Uchegbu, I. F. Langmuir 2001, 17, 631.
- 60 Choucair, A.; Lavigueur, C.; Eisenberg, A. Langmuir 2004, 20, 3894.
- 61 Pearson, R. T.; Warren, N. J.; Lewis, A. L.; Armes, S. P.; Battaglia, G. Macromolecules 2013, 46, 1400.
- 62 Wu, D. L.; Spulber, M.; Itel, F.; Chami, M.; Pfohl, T.; Palivan, C. G.; Meier, W. Macromolecules 2014, 47, 5060.
- 63 Henderson, I. M.; Paxton, W. F. J. Polym. Sci. Part B: Polym. Phys. 2015, 53, 297.
- 64 Le Meins, J. F.; Sandre, O.; Lecommandoux, S. Eur. Phys. J. E 2011, 34, 14.