Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly(vinylidene fluoride-co-hexafluoropropylene) with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate
Shalu
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorSujeet Kumar Chaurasia
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Rajendra Kumar Singh
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Correspondence to: R. K. Singh (E-mail: [email protected])Search for more papers by this authorSuresh Chandra
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorShalu
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorSujeet Kumar Chaurasia
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Rajendra Kumar Singh
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Correspondence to: R. K. Singh (E-mail: [email protected])Search for more papers by this authorSuresh Chandra
Department of Physics, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorABSTRACT
Polymeric gel electrolyte membranes based on the polymer poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF–HFP)] with different weight percentages of the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate plus 0.3M lithium tetrafluoroborate (LiBF4) salt were prepared and characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared (FTIR) spectroscopy, complex impedance spectroscopy, pulse echo techniques, and Vickers hardness (H) testing. After the incorporation of the IL plus the salt solution in the P(VdF–HFP) polymer, the melting temperature, glass-transition temperature (Tg), degree of crystallinity, thermal stability, elastic modulus (E), and hardness (H) gradually decreased with increasing content of the IL–salt solution as a result of complexation between the P(VdF–HFP) and IL. This was confirmed by FTIR spectroscopy. A part of the IL and LiBF4 were found to remain uncomplexed as well. The ionic conductivity (σ) of the polymeric gel membranes was found to increase with increasing concentration of the IL–salt solution. The temperature-dependent σs of these polymeric gel membranes followed an Arrhenius-type thermally activated behavior. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41456.
REFERENCES
- 1
Scrosati, B. Applications of Electroactive Polymers; Chapman & Hall: London, 1993.
10.1007/978-94-011-1568-1 Google Scholar
- 2 Nishi, Y.; Schalkwijk, W. V.; Scrosati, B. In Advances in Li-Ion Batteries; Kluwer Academic/Plenum: New York, 2002; Chapter 7.
- 3 Lee, J. S.; Quan, N. D.; Huang, J. M.; Lee, S. D.; Kim, H.; Lee, H.; Kim, H. S. J. Ind. Eng. Chem. 2006, 12, 175.
- 4 Sekhon, S. S.; Kaur, D. P.; Park, J. S.; Yamada, K. Electrochim. Acta 2012, 60, 366.
- 5 Byrne, N.; Efthimiadis, J.; MacFarlane, D. R.; Forsyth, M. J. Mater. Chem. 2004, 14, 127.
- 6 Tarascon, J. M.; Gozdz, A. S.; Schmutz, C.; Shokoohi, F.; Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 1996, 86–88, 49.
- 7 Tian, X.; Zhu, B.; Xu, Y. J. Membr. Sci. 2005, 248, 109.
- 8 Ramesh, S.; Lu, S. C. J. Mol. Struct. 2011, 994, 403.
- 9 Lim, D. H.; Manuel, J.; Ahn, J. H.; Kim, J. K.; Jacobsson, P.; Matic, A.; Ha, J. K.; Cho, K. K.; Kim, K. W. Solid State Ionics 2012, 225, 631.
- 10 Pandey, G. P.; Agrawal, R. C.; Hashmi, S. A. J. Power Sources 2009, 190, 563.
- 11 Asmara, S. N.; Kufian, M. Z.; Majid, S. R.; Arof, A. K. Electrochim. Acta 2011, 57, 91.
- 12 Stallworth, P. E.; Greenbaum, S. G.; Croce, F.; Slanet, S.; Salomon, M. Electrochim. Acta 1995, 40, 2137.
- 13 Chaurasia, S. K.; Singh, R. K.; Chandra, S. J. Raman Spectrosc. 2011, 42, 2168.
- 14 Martinelli, A.; Matic, A.; Jacobsson, P.; Borjesson, L.; Fernicola, A.; Panero, S.; Scrosati, B.; Ohno, H. J. Phys. Chem. B 2007, 111, 12462.
- 15 Tsunemi, K.; Ohno, H.; Tsuchida, E. Electrochim. Acta 1983, 28, 833.
- 16 Ohno, H. Macromol. Symp. 2007, 249–250, 551.
- 17 Noda, A.; Hayamizu, K.; Watanabe, M. J. Phys. Chem. B 2001, 105, 4603.
- 18 Chaurasia, S. K.; Singh, R. K.; Chandra, S. J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 291.
- 19 Ohno, H. Electrochemical Aspects of Ionic Liquids; Wiley: Hoboken, NJ, 2005.
- 20 Seki, S.; Susan, M. A. B. H.; Kaneko,; Tokuda, T. H.; Noda, A.; Watanabe, M. J. Phys. Chem. B 2005, 109, 3886.
- 21 Jansen, J. C.; Friess, K.; Clarizia, G.; Schauer, J.; Izak, P. Macromolecules 2011, 44, 39.
- 22 Chaurasia, S. K.; Singh, R. K.; Chandra, S. Solid State Ionics 2011, 183, 32.
- 23 Ye, H.; Huang, J.; Xu, J. J.; Khalfan, A.; Greenbaum, S. G. J. Electrochem. Soc. 2007, 21, A1048.
- 24 Brandt, K. Solid State Ionics 1994, 69, 173.
- 25 Yang, P.; Liu, L.; Li, L.; Hou, J.; Xu, Y.; Ren, X.; An, M.; Li, N. Electrochim. Acta 2014, 115, 454.
- 26 Navarra, M. A.; Manzi, J.; Lombardo, L.; Panero, S.; Scrosati, B. ChemSusChem 2011, 4, 125.
- 27 Jung, K.-N.; Lee, J.-I.; Jung, J.-H.; Shin, K.-H.; Lee, J.-W. Chem. Commun. 2014, 50, 5458.
- 28 Shalu.; Chaurasia, S. K.; Singh, R. K.; Chandra, S. J. Phys. Chem. B 2013, 117, 897.
- 29 Abbrent, S.; Plestil, J.; Hlavata, D.; Lindgren, J.; Tegenfeldt, J.; Wendsjo, A. Polymer 2001, 42, 1407.
- 30 Saikia, D.; Kumar, A. Electrochim. Acta 2004, 49, 2581.
- 31 Saikia, D.; Han, C. C.; Chen-Yang, Y. W. J. Power Sources 2008, 185, 570.
- 32 Fahmi, E. M.; Ahmad, A.; Nazeri, N. N. M.; Hamzah, H.; Razali, H.; Rahman, M. Y. A. Int. J. Electrochem. Sci. 2012, 7, 5798.
- 33 Jin, J.; Wen, Z.; Liang, X.; Cui, Y.; Wu, X. Solid State Ionics 2012, 225, 604.
- 34 Scott, M. P.; Brazel, C. S.; Benton, M. G.; Mays, J. W.; Holbrey, J. D.; Rogers, R. D. Chem. Commun. 2002, 1370.
- 35 Reynhardt, E. C.; Lourens, J. A. J. J. Chem. Phys. 1984, 80, 6240.
- 36 Joost, M.; Kunze, M.; Jeong, S.; Schönhoff, M.; Wintera, M.; Passerini, S. Electrochim. Acta 2012, 86, 330.
- 37 Liew, C.-W.; Ong, Y. S.; Lim, J. Y.; Lim, C. S.; Teoh, K. H.; Ramesh, S. Int. J. Electrochem. Sci. 2013, 8, 7779.
- 38 Tian, X.; Jiang, X.; Zhu, B.; Xu, Y. J. Membr. Sci. 2006, 279, 479.
- 39 Kobayashi, M.; Tashiro, K.; Tadokoro, H. Macromolecules 1975, 8, 158.
- 40 Li, Z.; Su, G.; Gao, D.; Wang, X.; Li, X. Electrochim. Acta 2004, 49, 4633.
- 41 Pandey, G. P.; Hashmi, S. A. J. Power Sources 2009, 187, 627.
- 42 Heimer, N. E.; Sesto, R. E. D.; Meng, Z.; Wilkes, J. S.; Robert, W.; Carper, J. Mol. Liq. 2006, 124, 84.
- 43 Shi, J.; Wu, P.; Yan, F. Langmuir 2010, 26, 11427.
- 44 Jeon, Y.; Sung, J.; Seo, C.; Lim, H.; Cheong, H.; Kang, M.; Moon, B.; Ouchi, Y.; Kim, D. J. Phys. Chem. B 2008, 112, 4735.
- 45 Gonfa, G.; Bustam, M. A.; Man, Z.; Abdul Mutalib, M. I. Asian Trans. Eng. 2011, 1, 24.
- 46 Hunt, P. A.; Kirchner, B.; Welton, T. Chem. Eur. J. 2006, 12, 6762.
- 47 Kempter, V. J. Mol. Struct. 2010, 972, 22.
- 48 Izgorodina, E. I.; Maganti, R.; Armel, V.; Dean, P. M.; Pringle, J. M.; Seddon, K. R.; MacFarlane, D. R. J. Phys. Chem. B 2011, 115, 14688.
- 49 Izgorodina, E. I.; MacFarlane, D. R. J. Phys. Chem. B 2011, 115, 14659.
- 50 Baltá-Calleja, F. J.; Martinez-Salazar, J.; Rueda, D. R. In Encyclopedia of Polymer Science and Engineering; J. I. Kroschwitz, Ed.; Wiley: New York, 1987; Vol. 7, p 614.
- 51 Benavente, R.; Pérez, E.; Quijada, R. J. Polym. Sci. Polym. Phys. 2001, 39, 277.
- 52 Sacristán, J.; Benavente, R.; Pereña, J. M.; Pérez, E.; Bello, A.; Rojas, R.; Quijada, R.; Rabagliati, F. M. J. Therm. Anal. Calorim. 1999, 58, 559.
- 53 Flores, A.; Baltá-Calleja, F. J.; Attenburrow, G. E.; Basset, D. C. Polymer 2000, 41, 5431.
- 54 Boycheva, S. V.; Vassilev, V. S.; Petkov, P. J. Optoelectron. Adv. Mater. 2001, 3, 503.
- 55 Salminen, J.; Prausnitza, J. M.; Newman, J. Preliminary Report, Sept. 21, 2005, Department of Chemical Engineering, University of California, Berkeley, CA 94720; USA Environmental Energy Technology Division, LBNL: Berkeley, CA, and USA Chemical Sciences Division, LBNL: Berkeley, CA.
- 56 Kumar, Y.; Pandey, G. P.; Hashmi, S. A. J. Phys. Chem. C 2012, 116, 26118.
- 57 Kim, K. S.; Park, S. Y.; Choi, S.; Lee, H. J. Power Sources 2006, 155, 385.
- 58 Hofmann, A.; Schulz, M.; Hanemann, T. Electrochim. Acta 2013, 89, 823.
- 59 Grey, F. M. Solid Polymer Electrolytes: Fundamental and Technological Applications; VCH: New York, 1991.
Citing Literature
February 15, 2015