Full factorial design-of-experiments for preparation of crosslinked dextran microspheres
Hamed Salimi Kenari
Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Imani
Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran===Search for more papers by this authorAzizollah Nodehi
Department of Process Modeling and Control, Iran Polymer and Petrochemical Institute, Tehran, Iran
Search for more papers by this authorHamed Salimi Kenari
Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Imani
Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran===Search for more papers by this authorAzizollah Nodehi
Department of Process Modeling and Control, Iran Polymer and Petrochemical Institute, Tehran, Iran
Search for more papers by this authorAbstract
This work describes full factorial design-of-experiment methodology for exploration of effective parameters on physical properties of dextran microspheres prepared via an inverse emulsion (W/O) technique. Microspheres were prepared by chemical crosslinking of dextran dissolved in internal phase of the emulsion using epichlorohydrin. The input parameters were dextran concentration in the aqueous phase, crosslinking ratio, and concentrations of sodium hydroxide and span 80 as the reaction catalyst and surfactant, respectively. Chemical structure of the resulting microspheres was analyzed spectroscopically using Fourier-transform infrared technique. Final decomposition temperature, mean particle size and its distribution and equilibrium swelling ratio were selected as output responses. Microspheres with smooth surface were obtained according to scanning electron micrographs. It was found that an increase in dextran concentration in the aqueous internal phase increases mean particle diameter of the resulting microspheres, significantly. Moreover, water uptake capacity for the microspheres was dependent on both the dextran concentration and crosslinking ratio. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
References
- 1 Saralidze, K.; Koole, L. H.; Knetsch, M. L. W. Materials 2010, 3, 3537.
- 2 Oh, J. K.; Lee, D. I.; Park, J. M. Prog. Polym. Sci. 2009, 34, 1261.
- 3 Topuz, F.; Okay, O. React. Funct. Polym. 2009, 69, 273.
- 4 Seyednejad, H.; Imani, M.; Jamieson, T.; Seifalian, A. M. Br. J. Surg. 2008, 95, 1197.
- 5 Freiberg, S.; Zhu, X. X. Int. J. Pharm. 2004, 282, 1.
- 6 Lopez, V. C.; Raghavan, S. L.; Snowden, M. J. React. Funct. Polym. 2004, 58, 175.
- 7 Petro, M.; Berek, D.; Novak, I. React. Polym. 1994, 23, 173.
- 8 Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F. J. Controlled Release 2007, 119, 5.
- 9 Slomkowski, S.; Basinska, T.; Miksa, B. Polym. Adv. Technol. 2002, 13, 906.
- 10 Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Adv. Polym. Sci. 2006, 205, 199.
- 11 Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K. Prog. Polym. Sci. 2008, 33, 448.
- 12 Li, M.; Rouaud, O.; Poncelet, D. Int. J. Pharm. 2008, 363, 26.
- 13 Zhang, F. J.; Cheng, G. X.; Ying, X. G. React. Funct. Polym. 2006, 66, 712.
- 14 Yao, R. S.; Gao, W. X.; Sun, J.; You, Y. H. Chin. J. Polym. Sci. 2005, 23, 401.
- 15 Zhang, J. G.; Xu, S. Q.; Kumacheva, E. J. Am. Chem. Soc. 2004, 126, 7908.
- 16 Arshady, R. Polym. Eng. Sci. 1989, 29, 1746.
- 17 Skiba, M.; Bounoure, F.; Barbot, C.; Arnaud, P. J. Pharm. Pharm. Sci. 2005, 8, 409.
- 18 Guner, A.; Akman, O.; Rzaev, Z. M. O. React. Funct. Polym. 2001, 47, 55.
- 19 Atyabi, F.; Manoochehri, S.; Moghadam, S. H.; Dinarvand, R. Arch. Pharm. Res. 2006, 29, 1179.
- 20 Pacek, A. W.; Ding, P.; Nienow, A. W. Chem. Eng. Sci. 2001, 56, 3247.
- 21 Bahukudumbi, P.; Carson, K. H.; Rice-Ficht, A. C.; Andrews, M. J. J. Microencapsul. 2004, 21, 787.
- 22 Berchane, N. S.; Jebrail, F. F.; Carson, K. H.; Rice-Ficht, A. C.; Andrews, M. J. J. Microencapsul. 2006, 23, 539.
- 23 Hamdi, G.; Ponchel, G.; Duchene, D. J. Microencapsul. 2001, 18, 373.
- 24 Flory, P. J.; Rehner, J., Jr. J. Chem. Phys. 1943, 11, 521.
- 25 Peppas, N. A.; Huang, Y.; Torres-Lugo, M.; Ward, J. H.; Zhang, J. Annu. Rev. Biomed. Eng. 2000, 2, 9.
- 26 Imren, D.; Gumusderelioglu, M.; Guner, A. J. Appl. Polym. Sci. 2006, 102, 4213.
- 27 de Jong, S. J.; van Eerdenbrugh, B.; van Nostrum, C. F.; Kettenes-van de Bosch, J. J.; Hennink, W. E. J. Controlled Release 2001, 71, 261.
- 28 Bo, J. J. Appl. Polym. Sci. 1992, 46, 783.
- 29 Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Adv. Mater. 2006, 18, 1345.
- 30 Canal, T.; Peppas, N. A. J. Biomed. Mater. Res. 1989, 23, 1183.
- 31 Dubey, R. R.; Parikh, R. H. AAPS Pharm. Sci. Tech. 2004, 5, 20.
- 32 Box, G. E. P.; Hunter, W. G.; Hunter, J. S. Statistics for experiments. An introduction to design, data analysis and model building. New York: Wiley, 1978.
- 33 Kartha, K. P. R.; Srivastava, H. C. Starch Stärke 1985, 37, 297.
- 34 Dragan, D.; Mihai, D.; Mocanu, G.; Carpov, A. React. Funct. Polym. 1997, 34, 79.
- 35 Spychaj, T.; Bartkowiak, A. Polym. Adv. Technol. 1998, 9, 138.
- 36 Ozdemir, C.; Colak, N.; Guner, A. J. Appl. Polym. Sci. 2007, 105, 1177.
- 37 Pariot, N.; Edwards-Levy, F.; Andry, M. C.; Levy, M. C. Int. J. Pharm. 2000, 211, 19.
- 38 Renard, E.; Sebille, B.; Barnathan, G.; Deratani, A. Macromol. Symp. 1997, 1, 229.
- 39 Hou, X.; Yang, J.; Tang, J.; Chen, X.; Wang, X.; Yao, K. React. Funct. Polym. 2006, 66, 1711.
- 40 Yuan, W. E.; Wu, F.; Geng, Y.; Xu, S. L.; Jin, T. Int. J. Pharm. 2006, 339, 76.
- 41 Jiugao, Y.; Jie, L. Starch Stärke 1994, 46, 252.
- 42 Maggioris, D.; Goulas, A.; Alexopoulos, A. H.; Chatzi, E. G.; Kiparissides, C. Chem. Eng. Sci. 2000, 55, 4611.
- 43 Motlekar, N.; Youan, B. B. Drug. Des. Dev. Ther. 2008, 2, 39.
- 44 Kotoulas, C.; Kiparissides, C. Chem. Eng. Sci. 2006, 61, 332.
- 45 Walstra, P. Chem. Eng. Sci. 1993, 48, 333.