Covalent-ionically crosslinked sulfonated poly(arylene ether sulfone)s bearing quinoxaline crosslinkages as proton exchange membranes
Pei Chen
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China
School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Search for more papers by this authorCorresponding Author
Xinbing Chen
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China
School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China===Search for more papers by this authorZhongwei An
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Xian Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
Search for more papers by this authorPei Chen
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China
School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Search for more papers by this authorCorresponding Author
Xinbing Chen
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China
School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China===Search for more papers by this authorZhongwei An
Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Xian Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
Search for more papers by this authorAbstract
Crosslinkable sulfonated poly(arylene ether sulfone)s (SPAESs) were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil, 4,4′-difluorodiphenyl sulfone, and 3,3′-disulfonated-4,4′-difluorodiphenyl sulfone disodium salt. The corresponding covalent-ionically crosslinked SPAESs were prepared via the cyclocondensation reaction of benzil moieties in polymer chain with 3,3′-diaminobenzidine. The crosslinking significantly improved the membrane performance, that is, the crosslinked membranes had the lower membrane dimensional swelling, lower methanol permeability, and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CS5) with measured ion exchange capacity of 1.47 meq g−1 showed a reasonably high proton conductivity of 112 mS cm−1 with water uptake of 42 wt % at 80°C, and exhibited a low methanol permeability of 2.1 × 10−7 cm2 s−1 for 32 wt % methanol solution at 25°C. The crosslinked SPAES membranes have potential for PEFC and DMFCs. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
References
- 1 Kamarudin, S. K.; Achmad, F.; Daud, W. R. W. Int J Hydrogen Energy 2009, 34, 6902.
- 2 Liang, C.; Hisatani, H.; Maruyama, T.; Ohmukai, Y.; Sotani, T.; Matsuyama, H. J Appl Polym Sci 2010, 116, 267.
- 3 Mauritz, K. A.; Moore, R. B. Chem Rev 2004, 104, 4535.
- 4 Rikukawa, M.; Sanui, K. Prog Polym Sci 2000, 25, 1463.
- 5 Mehta, V.; Cooper, J. S. J Power Sources 2003, 114, 32.
- 6 Jones, D. J.; Roziere, J. Adv Polym Sci 2008, 215, 219.
- 7 Higashihara, T.; Matsumoto, K.; Ueda, M. Polymer 2009, 50, 5341.
- 8
Zhou, W.;
Xiao, J.;
Chen, Y.;
Zeng, R.;
Xiao, S.;
He, X.;
Li, F.;
Song, C.
J Appl Polym Sci
2010,
117,
1436.
10.1002/app.32000 Google Scholar
- 9 Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Chem Rev 2004, 104, 4587.
- 10 Yin, Y.; Yamada, O.; Tanaka, K.; Okamoto, K. Polym J 2006, 38, 197.
- 11 Chen, X.; Chen, P.; Okamoto, K. J Appl Polym Sci 2009, 112, 3560.
- 12 Marestin, C.; Gebel, G.; Diat, O.; Mercier, R. Adv Polym Sci 2008, 216, 185.
- 13 Lee, H.; Roy, A.; Lane, O.; Lee, M.; McGrath, J. E. J Polym Sci Part A: Polym Chem 2010, 48, 214.
- 14 Einsla, M. L.; Kim, Y. S.; Hawley, M.; Lee, H. S.; McGrath, J. E.; Liu, B.; Guiver, M. D.; Pivovar, B. S. Chem Mater 2008, 20, 5636.
- 15 Miyatake, K.; Chikashige, Y.; Higuchi, E.; Watanabe, M. J Am Chem Soc 2007, 129, 3879.
- 16 Bae, B.; Yoda, T.; Miyatake, K.; Uchida, H.; Watanabe, M. Angew Chem Int Ed Engl 2010, 49, 317.
- 17 Matsumoto, K.; Higashihara, T.; Ueda, M. Macromolecules 2009, 42, 1161.
- 18 Kim, D. S.; Robertson, G. P.; Guiver, M. D. Macromolecules 2008, 41, 2126.
- 19 Kim, D. S.; Robertson, G. P.; Kim, Y. S.; Guiver, M. D. Macromolecules 2009, 42, 957.
- 20 Hu, H.; Xiao, M.; Wang, S. J.; Meng, Y. Z. Int J Hydrogen Energy 2010, 35, 682.
- 21 Liu, B.; Robertson, G.; Kim, D. S.; Guiver, M. D.; Hu, W.; Jiang, Z. Macromolecules 2007, 40, 1934.
- 22 Li, X. F.; Zhao, C. J.; Lu, H.; Wang, Z.; Na, H. Polymer 2005, 46, 5820.
- 23 Bi, H.; Chen, S.; Chen, X.; Chen, K.; Endo, N.; Higa, M.; Okamoto, K.; Wang, L. Macromol Rapid Commun 2009, 30, 1852.
- 24 Asano, N.; Aoki, M.; Suzuki, S.; Miyatake, K.; Uchida, H.; Watanabe, M. J Am Chem Soc 2006, 128, 1762.
- 25 Qiu, Z.; Wu, S.; Li, Z.; Zhang, S.; Xing, W.; Liu, C. Macromolecules 2006, 39, 6425.
- 26 Kerres, J.; Zhang, W.; Haering, T. J New Mater Electrochem Syst 2004, 7, 299.
- 27 Fang, J.; Zhai, F.; Guo, X.; Xu, H.; Okamoto, K. J Mater Chem 2007, 17, 1102.
- 28 Mikhailenko, S. D.; Robertson, G. P.; Guiver, M. D.; Kaliaguine, S. J Membr Sci 2006, 285, 306.
- 29 Gu, S.; He, G.; Wu, X.; Guo, Y.; Liu, H.; Peng, L.; Xiao, G. J Membr Sci 2008, 312, 48.
- 30 Zhong, S.; Cui, X.; Cai, H.; Fu, T.; Zhao, C.; Na, H. J Power Sources 2007, 164, 65.
- 31 Ding, F. C.; Wang, S. J.; Xiao, M.; Li, X. H.; Meng, Y. Z. J Power Sources 2007, 170, 20.
- 32 Feng, S.; Shang, Y.; Xie, X.; Wang, Y.; Xu, J. J Membr Sci 2009, 335, 13.
- 33 Kerres, J.; Ullrich, A.; Haring, T.; Baldauf, M.; Gebhardt, U.; Preidel, W. J New Mater Electrochem Syst 2000, 3, 229.
- 34 Sen, U.; Bozkurt, A.; Ata, A. J Power Sources 2010, 195, 7720.
- 35 Li, H.; Zhang, G.; Ma, W.; Zhao, C.; Zhang, Y.; Han, M.; Zhu, J.; Liu, Z.; Wu, J.; Na, H. Int J Hydrogen Energy 2010, 35, 11172.
- 36 Lin, H. D.; Zhao, C. J.; Ma, W. J.; Li, H. T.; Na, H. Int J Hydrogen Energy 2009, 34, 9795.
- 37 Yang, M.; Lu, S.; Lu, J.; Jiang, S. P.; Xiang, Y. Chem Commun 2010, 46, 1434.
- 38 Kharlampieva, E.; Kozlovskaya, V.; Sukhishvili, S. A. Adv Mater 2009, 21, 3053.
- 39 Taylor, M. M. A.; Sekol, R.; Podsiadlo, P.; Ho, P.; Kotov, N.; Thompson, L. Adv Mater 2007, 19, 3859.
- 40 Tripathi, B. P.; Chakrabarty T.; Shahi, V. K. J Mater Chem 2010, 20, 8036.
- 41 Chen, X.; Chen, P.; An, Z.; Chen, K.; Okamoto, K. J Power Sources 2011, 196, 1694.
- 42 Fang, J.; Guo, X.; Harada, S.; Watari, T.; Tanaka, K.; Kita, H.; Okamoto, K. Macromolecules 2002, 35, 9022.
- 43 Zhang, Y.; Cui, Z.; Zhao, C.; Shao, K.; Li, H.; Fu, T.; Na, H.; Xing, W. J Power Sources 2009, 191, 253.
- 44 Pang, J.; Zhang, H.; Li, X.; Jiang, Z. Macromolecules 2007, 40, 9435.