Comparative study of the hydrolysis of different oils by lipase-immobilized membranes
S. Gupta
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Search for more papers by this authorP. Ingole
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Search for more papers by this authorK. Singh
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Search for more papers by this authorCorresponding Author
A. Bhattacharya
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India===Search for more papers by this authorS. Gupta
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Search for more papers by this authorP. Ingole
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Search for more papers by this authorK. Singh
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Search for more papers by this authorCorresponding Author
A. Bhattacharya
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India
Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat, India===Search for more papers by this authorAbstract
Lipase immobilization on asymmetric polysulfone (PS) membranes was done by physical adsorption and covalent coupling techniques. The glutaraldehyde (Glu) crosslink showed maximum immobilization (1.53 mg/cm2) on the hydrazine (Hz)-modified membrane surface. Lipase immobilization on the membrane was proved by different analytical tools (viz., X-ray diffraction, scanning electron microscopy). The hydrolase-immobilized enzyme marked its hydrolyzing ability to different oils (olive, palm, and castor oils). The hydrolysis yield (U/mg) for the different immobilized membranes was in the following order: Olive oil > Palm oil > Castor oil. The PS–Hz–Glu–lipase membrane showed maximum hydrolyzing ability for olive oil (62.37 U/mg) and minimum hydrolyzing ability for castor oil (38.11 U/mg). The low aptitude for the hydrolysis of castor oil was explained by the presence of ricinoleic acid in the main composition. The lowest affinity toward castor oil (Michaelis–Menten constant = 18.86 mM) also featured the same. The order of maximum reaction rate for the same membrane was as follows: Olive oil (64.5) > Palm oil (62.5) > Castor oil (41.6). The immobilized lipase on PS–Hz–Glu suffered only a 12.5% deterioration for olive oil after five cycles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
References
- 1 Hartmeier, W. Immobilized Biocatalysts; Springer-Verlag: Berlin, 1986.
- 2 Huang, X. L.; Catignani, G. L.; Swaisgood, H. E. J Biotechnol 1997, 53, 21.
- 3 Kise, H.; Hayakawa, A. Enzyme Microb Technol 1991, 13, 584.
- 4 Saleem, M.; Rashid, M. H.; Jabbar, A.; Perveen, R.; Khalid, A. M.; Rajoka, M. I. Process Biochem 2003, 40, 849.
- 5 Bhandari, S.; Gupta, V. K.; Singh, H. Biocatal Biotrans 2009, 27, 71.
- 6 Noinville, S.; Revault, M.; Baron, M.; Tiss, A.; Yapoudjian, S.; Ivanova, M. Biophys J 2002, 82, 2709.
- 7 Gao, S.; Wang, Y.; Wang, T.; Luo, G.; Dai, Y. Bioresour Tech 2009, 100, 996.
- 8 Serra, E.; Alfredsson, V.; Blanco, R. M.; Diaz, I. Stud Surf Sci Catal 2008, 174, 369.
- 9 Ghiaci, M.; Aghaei, H.; Soleimanian, S.; Sedaghat, M. E. Appl Clay Sci 2008, 43, 289.
- 10 Wang, Y.; Hu, Y.; Xu, J.; Luo, G.; Dai, Y. J Membr Sci 2007, 293, 133.
- 11 Bayramoglu, G.; Kacar, Y.; Denizli, A.; Arica, M. Y. J Food Eng 2002, 52, 367.
- 12 Hayes, D. J Am Oil Chem Soc 2004, 81, 1077.
- 13 Deng, H. T.; Xu, Z. K.; Dai, Z. W.; Jian, W.; Patrick, S. Enzyme Microb Technol 2005, 36, 996.
- 14 Monier, M.; El-Sokkary, A. M. A.; Sarhan, A. A. React Funct Polym 2010, 70, 122.
- 15 Rudnik, E.; Dobkowski, Z. J Therm Anal Calorim 1995, 45, 1153.
- 16 Peinemann, K. V.; Nunes S. P. Membranes for Life Sciences; Wiley: Hoboken, NJ, 2008.
- 17 Kumar, Y.; Popat, K. M.; Brahmbhatt, H.; Ganguly, B.; Bhattacharya, A. J Hazard Mater 2008, 154, 426.
- 18 Saha, N. K.; Balakrishnan, M.; Ulbricht, M. Desalination 2009, 249, 1124.
- 19 Ciobanu, M.; Marin, L.; Cozan, V.; Bruma, M. Rev Adv Mater Sci 2009, 22, 89.
- 20 Radvanovic, P.; Thiel, S. W.; Hwang, S. T. J Membr Sci 1992, 65, 231.
- 21 Reinish, M. D. J Am Oil Chem Soc 1956, 33, 516.
- 22 Pryde, E. H. Fatty Acids; The American Oil Chemist's Society: Champaign, IL, 1985.
- 23 Brady, C.; Metcalfek, L.; Slaboszewski, D.; Frank, D. J Am Oil Chem Soc 1988, 65, 917.
- 24 Shinota, A.; Machida, H.; Azuma, T. (to Meito Sangyo Co., Ltd.). Jpn. Pat. 71:16,509 ( 1967).
- 25 Murty, V. R.; Bhat, J.; Muniswaran, P. K. A. Biotech Bioprocess Eng 2002, 7, 57.
- 26 Lakshminarayana, G.; Subbarao, R.; Sastry, Y. S. R.; Kale, V.; Rao, T. C.; Gangadhar, A. J Am Chem Soc 1984, 61, 1204.
- 27 Wikipedia. http://en.wikipedia.org/wiki/.
- 28 Kim, J. Y.; Lee, H. K.; Baik, K. J.; Kim, S. C. J Appl Polym Sci 1997, 65, 2643.
- 29 Yogesh, P. P.; Basu, S.; Bhattacharya, A. J Appl Polym Sci 2007, 105, 609.
- 30 Coulet, P. R.; Julliard, J. H.; Gautheron, D. C. Biotechnol Bioeng 1974, 16, 1055.
- 31 Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J Biol Chem 1951, 193, 265.
- 32 Gupta, S.; Yogesh, J. S.; Bhambi, M.; Pundir, C.; Singh, K.; Bhattacharya, A. Int J Biol Macromol 2008, 42, 145.
- 33 Bhattacharya, A.; Ray, P.; Brahmbhatt, H.; Vyas, K. N.; Joshi, S. V.; Devmurari, C. V.; Trivedi, J. J. J Appl Polym Sci 2006, 102, 3575.
- 34 Reuvers, A. J.; Smolders, C. A. J Membr Sci 1987, 34, 67.
- 35 Cohen, C.; Tanny, G. B.; Prager, S. J Polym Sci Polym Phys Ed 1979, 17, 477.
- 36 Kang, Y. S.; Kim, H. J.; Kim, U. Y. J Membr Sci 1990, 60, 219.
- 37 Yamagishi, H.; Grivello, J. V.; Belfort, G. J Membr Sci 1995, 105, 237.
- 38 Pronk, W.; Kerkhof, P. J. A.; Helden, C.; Reit, V. K. Biotechnol Bioeng 1988, 32, 512.
- 39 Freitas, L.; Bueno, T.; Perez, V. H.; Santos, J. C.; de Castro, H. F. World J Microb Biotechnol 2007, 23, 1725.
- 40 Ibrahim, C. O.; Hayashiand, M.; Nagai, S. Agric Biol Chem 1987, 51, 37.
- 41 Moskowitz, G. J.; Cassaigne, R.; West, I. R.; Shen, T.; Feldman, L. I. J Agric Food Chem 1977, 25, 1146.
- 42 Gupta, S.; Singh, K.; Bhattacharya, A. Int J Biol Macromol 2010, 46, 445.
- 43 Lineweaver, H.; Burk, D. J Am Chem Soc 1934, 56, 658.