Polypropylene nanocomposite film: A critical evaluation on the effect of nanoclay on the mechanical, thermal, and morphological behavior
Corresponding Author
S. K. Sharma
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India===Search for more papers by this authorCorresponding Author
Ajay K. Nema
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India===Search for more papers by this authorCorresponding Author
S.K. Nayak
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India===Search for more papers by this authorCorresponding Author
S. K. Sharma
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India===Search for more papers by this authorCorresponding Author
Ajay K. Nema
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India===Search for more papers by this authorCorresponding Author
S.K. Nayak
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India
Central Institute of Plastics Engineering and Technology, Chennai 600032, Tamil Nadu, India===Search for more papers by this authorAbstract
Polypropylene (PP)/clay nanocomposites prepared by melt blending technique using different percentages of clay with and without maleic anhydride grafted PP (MA-PP) were studied. The intercalated and exfoliated structure of nanocomposites was characterized by X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). Because of the typical intercalated and exfoliated structure, the tensile modulus of the nanocomposites were improved significantly as compared to virgin PP. The viscoelastic behavior of the nanocomposites was studied by dynamical mechanical analysis (DMA) and the results showed that with the addition of treated clay to PP there was substantial improvement in storage modulus increases. The thermal stability and crystallization of the PP nanocomposites as studied by differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) were also improved significantly compared to PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
References
- 1 Moet, A. S.; Akelah, A. Mater Lett 1993, 18, 97.
- 2 Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Macromolecules 1995, 28, 8080.
- 3
Moorti, R. K.;
Vaia, R. A.;
Giannelis, E. P.
Chem Mater
1996,
8,
1728.
10.1021/cm960127g Google Scholar
- 4 Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Adv Polym Sci 1999, 138, 107.
- 5 Ray, S. S.; Okamoto, M. Polym Sci 2003, 28, 1539.
- 6 Kawasumi, U. A.; Kojima, M.; Okada, Y.; Kurauchi, A.; Kamigaito, T. J Mater Res 1993, 8, 1174.
- 7 LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J Appl Clay Sci 1999, 15, 11.
- 8 Alexandre, M.; Dubois, P. Mater Sci Eng 2000, 28, 1.
- 9 Okamoto, M.; Morita, S.; Kotaka, T. Polymer 2001, 42, 2685.
- 10 Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A. J Appl Polym Sci 2000, 78, 1981.
- 11 Wang, Y.; Feng, B.; Chen, K.; Wu, C. Polymer 2004, 93, 100.
- 12 Ma, J. S.; Qi, Z. N.; Hu, Y. L. J Appl Polym Sci 2001, 82, 3611.
- 13 Manias, E.; Touny, A.; Wu, L.; Strawkecher, K.; Lu, B.; Chung, T. C. Chem Mater 2001, 13, 3516.
- 14 Kato, M.; Usuki, A.; Okada, A. J Appl Polym Sci 1997, 66, 1781.
- 15 Oya, A.; Kurokawa, Y.; Yasuda, H. J Mater Sci 2000, 35, 1045.
- 16 Peter, R.; Hansjorg, N.; Stefen, K.; Rainer, B.; Ralf, T.; Rolf, M. Macromol Mater Eng 2000, 275, 8.
- 17 Usuki, A.; Kato, M.; Okada, A.; Kurauchi, T. J Appl Polym Sci 1997, 63, 137.
- 18 Southern Clay Products Inc. Available at: www.nanoclay.com.
- 19 Giannelis, E. P.; Krisnamoorti, R.; Manias, M. Adv Polym Sci 1999, 138, 107.
- 20 Hambir, S.; Bulakh, N.; Jog, J. P. Polym Eng Sci 2002, 42, 1800.
- 21 Wang, S.; Hu, Y.; Zhong Kai, Q.; Wang, Z.; Chen, Z.; Fan, W. Mater Lett 2003, 57, 2675.
- 22 Ton-That, M. T.; Perrin-Sarazin, F.; Cole, C. K.; Bureau, M. N.; Denualt, J. Polym Eng Sci 2004, 44, 1212.
- 23 Usuki, A.; Kato, M.; Okada, A.; Kurauchi, T. J Appl Polym Sci 1997, 63, 137.
- 24 Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J Appl Polym Sci 1998, 67, 87.
- 25 Liu, X.; Wu, Q.; Berglund, L. A.; Lindberg, H.; Fan, J.; Qi, Z. J Appl Polym Sci 2003, 88, 953.
- 26 Moore, E. P., Jr. Polypropylene Handbook; Hanser Gardner: Cincinnati, 1996.
- 27 Carter, L.; Hendricks, J. G.; Bolley, D. S. US Pat. 2,531,396, 1950.
- 28 Yuanxin, Z.; Rangari, V.; Mahfuz, H.; Jeelani, S.; Mallick, P. K. Mater Sci Eng A 2005, 402, 109.
- 29 Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A. Macromolecules 1997, 30, 6333.
- 30 Zheng, H.; Zhang, H. Y.; Peng, Z.; Zhang, Y. J Appl Polym Sci 2004, 92, 638.
- 31 Xu, M.; Hu, Sh.; Zhang, X.; Guan, J. Polym Commun Chin 1981, 5, 339.
- 32
Via, R. A.;
Saure, B. B.;
Tse, O. K.;
Giannelis, E. P.
J Polym Sci Polym Phys
1997,
35,
59.
10.1002/(SICI)1099-0488(19970115)35:1<59::AID-POLB4>3.0.CO;2-Q Google Scholar
- 33 Jang, B. Z. J Appl Polym Sci 1984, 29, 4377.
- 34 Jang, B. Z. J Appl Polym Sci 1985, 30, 2485.
- 35 Modesti, M.; Lorenzetti, A.; Bon, D.; Besco, S. Polymer 2005, 46, 10237.
- 36 Lertwimolnun, W.; Vergnes, B. Polymer 2005, 46, 3462.
- 37 Szazdi, L.; Pukanszky, B.; Foldes, E., Jr.; Pukanszky, B. Polymer 2005, 46, 8001.
- 38 Tange, Y.; Yuan, H.; Song, L.; Ruowen, Z.; Zhou, G.; Zuyao, C.; Weicheng, F. Polymer 2003, 82, 127.
- 39 Lee, H.-s.; Paula, D.; Fasulo, W.; Rodgers, R.; Paul, D. R. Polymer 2005, 46, 11673.
- 40 Perrin-Sarazil, F.; Ton-That, M.-T.; Bureau, M. N.; Denault, J. Polymer 2005, 46, 11624.
- 41 Galgali, G.; Ramesh, C.; Lele, A. Macromolcules 2001, 34, 852.