Effect of formation conditions on the structure and properties of nanocomposite alginate fibers
Corresponding Author
Maciej Boguń
Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Technical University of Lodz, Poland
Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Technical University of Lodz, Poland===Search for more papers by this authorTeresa Mikołajczyk
Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Technical University of Lodz, Poland
Search for more papers by this authorStanisław Rabiej
Institute of Textile Engineering and Polymer Materials, Faculty of Materials and Environment Sciences, University of Bielsko, Biała
Search for more papers by this authorCorresponding Author
Maciej Boguń
Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Technical University of Lodz, Poland
Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Technical University of Lodz, Poland===Search for more papers by this authorTeresa Mikołajczyk
Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Technical University of Lodz, Poland
Search for more papers by this authorStanisław Rabiej
Institute of Textile Engineering and Polymer Materials, Faculty of Materials and Environment Sciences, University of Bielsko, Biała
Search for more papers by this authorAbstract
The conditions for producing nanocomposite fibers composed of calcium alginate, containing a hydroxyapatite nanoadditive were devised and the rheological, sorptive, and strength properties of these fibers, as well as their porous and supramolecular structure were subjected to analysis. It has been concluded that the presence of the HAp nanoadditive in the material of alginate fibers decreases their susceptibility to distortion in the drawing stage, which results in their tenacity properties being lower by 2cN/tex than of the fibers with no nanoadditive. The obtained nanocomposite fibers are characterised by a tenacity value exceeding 26 cN/tex, accompanied by high sorptive and water-retention properties of 90% and the even distribution of the nanoadditive on the fiber surface. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
References
- 1 Kong, H. J.; Kaigler, D.; Kim, K.; Mooney, D. J. Biomacromolecules 2004, 5, 1720.
- 2 Draget, K. I.; SkjK-Bræk, G.; Simdsrød, O. Int J Biol Macromol 1997, 21, 47.
- 3 Mørch, Y. A.; Donati, I.; Strand, B. L.; Skjåk-Bræk, G. Biomacromolecules 2007, 8, 2809.
- 4 Hashimoto, T.; Suzuki, Y.; Yamamoto, E.; Tanihara, M.; Kakimaru, Y.; Suzuki, K. Biomaterials 2004, 25, 1407.
- 5 Bouhadir, K. H.; Lee, K. Y.; Alsberg, E.; Damm, K. L.; Anderson, K. W.; Mooney, D. J. Biotechnol Prog 2001, 17, 945.
- 6 Alsberg, E.; Anderson, K. W.; Albeiruti, A.; Franceschi, R. T.; Mooney, D. J. J Dent Res 2001, 80, 2025.
- 7 Chung, T. W.; Yang, J.; Akaike, T.; Cho, K. Y.; Nah, J. W.; Kim, S. I.; Cho, C. S. Biomaterials 2002, 23, 2827.
- 8 Nie, H.; He, A.; Zheng, J.; Xu, S.; Li, J.; Han, C.hC. Biomacromolecules 2008, 9, 1362.
- 9 Despang, F.; Bernhardt, A.; Hanke, T.h; Pompe, W.; Gelinsky, M. J Am Ceram Soc 2007, 90, 1703.
- 10 Sakai, S.; Yamaguchi, S.; Takei, T.; Kawakami, K. Biomacromolecules 2008, 9, 2036.
- 11 Błażewicz, S.; Stoch, L. Biomateriały Tom 4”; Akademicka Oficyna Wydawnicza Exit: Warszawa, 2003.
- 12 Katti, K. S. Colloid Surf B 2004, 39, 133.
- 13 Van Blitterswijk, C. A.; Grote, J. J.; Kuijpers, W.; Daems, W. T.; De Groot, K. A. Biomaterials 1986, 7, 553.
- 14 Chen, Q. Z.; Wong, C. T.; Lu, W. W.; Cheung, K. M. C.; Leong, J. C. Y.; Luk, K. D. K. Biomaterials 2004, 25, 4243.
- 15 Le Geros, R. Z. Clin Mater 1993, 14, 65.
- 16 Weiner, S.; Wagner, H. D. Annu Rev Mater Sci 1998, 28, 271.
- 17 Loupasis, G.; Hyde, I. D.; Morris, E. W. Arch Orthop Traum Su 1998, 117, 132.
- 18 De Groot, K. Ceram Int 1993, 19, 93.
- 19 Chen, F.; Wang, Z. C.; Lin, C. J. Mater Lett 2002, 57, 858.
- 20 Deng, X.; Hao, J.; Wang, C. Biomaterials 2001, 22, 2867.
- 21 Haberko, K. Polish Patent No. P-359960, 2003.
- 22 Rabiej, M.; Rabiej, S. Analiza rentgenowskich krzywych dyfrakcyjnych polimerów za pomocą programu komputerowego; WAXFIT Publishing House ATH: Bielsko-Biała, 2006.
- 23 Rabiej, M. fibers Text Estern Eur 2003, 11, 83.
- 24 Rabiej, M. Polimery 2003, 48, 288.
- 25 Ferguson, J.; Kembłowski, Z. “ Reologia stosowana płynów”; Wydawnictwo Marcus sc: Łódź, 1995.
- 26 Mikołajczyk, T.; Boguń, M. Fibres Text East Eur 2005, 13, 28.
- 27 Wołowska-Czapnik, D.“ New Generation Alginate Fibers from Medical Application”, Doctoral Thesis, Technical University of Lodz, 2006.
- 28 Mikołajczyk, T.; Rabiej, S.; Boguń, M. J Appl Polym Sci 2006, 101, 760.
- 29 Lipp-Symonowicz, B. “ Physico-chemical aspekt of fibre dyeing and optical brightening”; Polish Academy of Science: Łodz, 2003.
- 30 Atkins, E.; Nieduszynski, I.; Mackie, W.; Parker, K.; Smolko, E. Biopolymers 1973, 12, 1865.
- 31 Draget, K. I.; Smidsrod, O.; Skjak-Braek, G. “ Alginates from Algae”, “Polysacharides and Polyamides in the Food Industry, Properties, Production and Patents”, A. Steinbuchel; S. K. Rhee, Eds. WILEY-VCH Verlag Gmbh & Co. KGaA: Weinheim, 2005.
- 32
Grant, G.; Morris, E.; Rees, D. A.; Smith, P. J. C.; Thom, D.
FEEBS Lett
1973,
32,
195.
10.1016/0014-5793(73)80770-7 Google Scholar
- 33 Smidsr D, O. J Chem Soc Faraday Trans 1974, 57, 263.
- 34 Sikorski, P.; Frode, M.; Skjak-Bræk, G.; Stokke, B. T. Biomacromolecules 2007, 8, 2098.
- 35 Fabia, J.; Ślusarczyk, C.; Gawłowski, A.; Graczyk, T.; Włochowicz, A.; Janicki, J. Fibres Text Estern Eur 2005, 13, 114.
- 36 Morris, E.; Rees, D. A.; Thom, D.; Boyd, J. Carbohydr Res 1978, 6632, 14595.