New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch
Corresponding Author
Hsin-Tzu Liao
Department of Chemical and Biochemical Engineering, Kao Yuan University, Kaohsiung County, Taiwan 82151, Republic of China
Department of Chemical and Biochemical Engineering, Kao Yuan University, Kaohsiung County, Taiwan 82151, Republic of China===Search for more papers by this authorChin-San Wu
Department of Chemical and Biochemical Engineering, Kao Yuan University, Kaohsiung County, Taiwan 82151, Republic of China
Search for more papers by this authorCorresponding Author
Hsin-Tzu Liao
Department of Chemical and Biochemical Engineering, Kao Yuan University, Kaohsiung County, Taiwan 82151, Republic of China
Department of Chemical and Biochemical Engineering, Kao Yuan University, Kaohsiung County, Taiwan 82151, Republic of China===Search for more papers by this authorChin-San Wu
Department of Chemical and Biochemical Engineering, Kao Yuan University, Kaohsiung County, Taiwan 82151, Republic of China
Search for more papers by this authorAbstract
In this study, new biodegradable nanocomposites were prepared from poly(lactic acid) (PLA) or acrylic acid grafted poly(lactic acid) (PLA-g-AA), titanium tetraisopropylate, and starch by means of an in situ sol–gel process and the melt-blending method. The samples were characterized with X-ray diffractometry, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and an Instron mechanical tester. According to the results, a PLA-g-AA/TiO2 hybrid could improve the properties of a PLA/TiO2 hybrid because the carboxylic acid groups of acrylic acid should act as coordination sites for the titania phase to form the TiOC chemical bond. It was also found that both the tensile strength and glass-transition temperature increased to a maximum value and then decreased with increasing TiO2 because excess particles (e.g., greater than 10 wt % TiO2) could cause separation or segregation between the organic and inorganic phases. A PLA-g-AA/TiO2/starch hybrid could obviously enhance the mechanical properties of a PLA-g-AA/starch hybrid because the former could provide a smaller starch phase size and nanoscale dispersion of TiO2 in the polymer matrix. The biodegradable nanocomposites produced in our laboratory could provide a plateau tensile strength at break when the starch content was up to 50 wt %. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008
References
- 1 Lu, X.;Zhao, Q.;Liu, X.;Wang, D.;Zhang, W.;Wang, C.;Wei, Y. Macromol Rapid Commun 2006, 27, 430.
- 2 Wu, C. S. J Polym Sci Part A: Polym Chem 2005, 43, 1690.
- 3 Xing, Y.;Ding, X. J Appl Polym Sci 2007, 103, 3113.
- 4 Kim, H.-W.;Kim, H.-E.;Salih, V.;Knowles, J. C. J Biomed Mater Res B 2005, 72, 1.
- 5 Gianni, A. D.;Trabelsi, S.;Rizza, G.;Sangermano, M.;Althues, H.;Kaskel, S.;Voit, B. Macromol Chem Phys 2007, 208, 76.
- 6 Deffar, D.;Teng, G.;Soucek, M. D. Macromol Mater Eng 2001, 286, 204.
- 7 Fattakhova-Rohlfing, D.;Wark, M.;Brezesinski, T.;Smarsly, B.M.;Rathouský, J. Adv Funct Mater 2007, 17, 123.
- 8 Choi, H.;Sofranko, A. C.;Dionysiou, D. D. Adv Funct Mater 2006, 16, 1067.
- 9 Koelsch, M.;Cassaignon, S.;Guillemoles, J. F.;Joliver, J. P. Thin Solid Films 2002, 430–404, 312.
- 10 Wu, C. S.;Liao, H. T. J Polym Sci Part B: Polym Phys 2003, 41, 351.
- 11 Que, W.;Zhou, Y.;Lam, Y. L.;Chan, Y. C.;Kam, C. H. Thin Solid Films 2000, 358, 16.
- 12 Hench, L. L.;West, J. K. Chem Rev 1990, 90, 33.
- 13 Slooff, L. H.;Kroon, J. M.;Loos, J.;Koetse, M. M.;Sweelssen, J. Adv Funct Mater 2005, 15, 689.
- 14 Liao, H. T.;Wu, C. S. J Polym Sci Part B: Polym Phys 2004, 42, 4272.
- 15 Mark, J. E. Polym Eng Sci 1996, 36, 2905.
- 16 Perrin, F. X.;Nguyen, V. N.;Vernet, J. V. Macromol Chem Phys 2005, 206, 1439.
- 17 Siuzdak, D. A.;Start, P. R.;Mauritz, K. A. J Appl Polym Sci 2000, 77, 2832.
- 18 Martin, O.;Averous, L. Polymer 2001, 42, 6209.
- 19 Elvassore, N.;Bertucco, A.;Caliceti, P. J Pharm Sci 2001, 90, 1628.
- 20 Piorkowska, E.;Kulinski, Z. Polymer 2005, 46, 10290.
- 21
Cho, S. M.;Kim, S. Y.;Lee, Y. M.;Sung, Y. K.;Cho, C. S.
J Appl Polym Sci
1999,
73,
2151.
10.1002/(SICI)1097-4628(19990912)73:11<2151::AID-APP11>3.0.CO;2-0 CAS Web of Science® Google Scholar
- 22 Tsuji, H.;Ikada, Y. J Appl Polym Sci 1998, 67, 405.
- 23 You, Y.;Lee, S. W.;Youk, J. H.;Min, B. M.;Lee, S. J.;Park, W. H. Polym Degrad Stab 2005, 90, 441.
- 24 Shi, Z.;Zhou, Y.;Yan, D. Polymer 2006, 47, 8073.
- 25 Ferreira, B. M. P.;Zavaglia, C. A. C.;Duek, E. A. R. J Appl Polym Sci 2002, 86, 2898.
- 26 Gaylord, N. G.;Metha, R.;Kumar, V.;Taze, M. J Appl Polym Sci 1989, 38, 359.
- 27 Wu, C. S. Macromol Bio 2005, 5, 352.
- 28 Wu, C. S.;Liao, H. T. Polymer 2005, 46, 10017.
- 29 Tsuji, H.;Fukui, I.;Daimon, H.;Fujie, K. Polym Degrad Stab 2003, 81, 501.
- 30 Kumar, P. M.;Badrinarayanan, S.;Sastry, M. Thin Solid Films 2000, 358, 122.
- 31 Shogren, R. L.;Thompson, A. R.;Felker, F. C.;Harry-Okuru, R. E.;Gordon, S. H.;Greeen, R. V.;Gould, J. M. J Appl Polym Sci 1992, 44, 1971.
- 32 Yao, F.;Chen, W.;Wang, H.;Lin, H.;Yao, K.;Sun, P.;Lin, H. Polymer 2003, 44, 6435.
- 33 Kim, J.;Tirrell, D. A. Macromolecules 1999, 32, 945.
- 34 Chiang, P. C.;Whang, W. T. Polymer 2003, 44, 2249.
- 35 Shao, P. L.;Mauritz, K. A.;Moore, R. B. J Polym Sci Part B: Polym Phys 1996, 34, 873.
- 36 Zhang, J.;Wang, B. J.;Ju, X.;Lin, T.;Hu, T. D. Polymer 2001, 42, 3697.
- 37 Hsu, Y. G.;Lin, F. J. J Appl Polym Sci 2000, 75, 275.
- 38 Steunou, N.;Robert, F.;Boubekeur, K.;Ribot, F.;Sanchez, C. Inorg Chim Acta 1998, 279, 141.
- 39 Langel, W.;Menken, L. Surf Sci 2003, 538, 1.
- 40 Robert, D.;Weber, J. V. Adsorption 2000, 6, 175.
- 41 Bikiaris, D.;Karavelidis, V.;Karayannidis, G. Macromol Rapid Commun 2006, 27, 1199.
- 42 Wu, C. S.;Laio, H. T. J Appl Polym Sci 2002, 86, 1792.
- 43 Wu, C. S. Polym Degrad Stab 2003, 80, 127.
- 44 Bikiaris, D.;Panayiotou, C. J Appl Polym Sci 1998, 70, 1503.
- 45 Huang, Z. H.;Qju, K. Y. Polymer 1997, 38, 521.
- 46 Pluta, M.;Galeski, A.;Alexandre, M.;Paul, M.-A.;Dubois, P. J Appl Polym Sci 2002, 86, 1497.
- 47 Ou, C.-F. J Polym Sci Part B: Polym Phys 2003, 41, 2902.
- 48 Zhang, J. H.;Zhuang, W.;Zhang, Q.;Liu, B.;Hu, B. X.;Shen, J. Polym Compos 2007, 28, 545.
- 49 Bian, C.;Yu, Y.;Xue, G. J Appl Polym Sci 2007, 104, 21.
- 50 Coleman, J. N.;Cadek, M.;Blake, R.;Nicolosi, V.;Ryan, K. P.;Belton, C.;Fonseca, A.;Nagy, J. B.;Cun'ko, Y. K.;Blau, W. J. Adv Funct Mater 2004, 14, 791.
- 51 Zhang, X.;Liu, T.;Sreekumar, T. V.;Kumar, S.;Moore, V. C.;Hauge, R. H.;Smalley, R. E. Nano Lett 2003, 3, 1285.
- 52 Geng, H.;Rosen, R.;Zheng, B.;Shimoda, H.;Fleming, L.;Liu, J.;Zhou, O. Adv Mater 2002, 14, 1387.
- 53 Yao, Z.;Braidy, N.;Botton, G. A.;Adronov, A. J Am Chem Soc 2003, 125, 16015.