Studies on polyethylene oxide and phenolic resin blends
Corresponding Author
Debdatta Ratna
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany===Search for more papers by this authorT. N. Abraham
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany
Search for more papers by this authorJ. Karger-Kocsis
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Debdatta Ratna
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany===Search for more papers by this authorT. N. Abraham
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany
Search for more papers by this authorJ. Karger-Kocsis
Institut fur Verbundwerkstoffe GmbH (Institute for Composite Materials), Technical University Kaiserslautern, D-67663, Kaiserslautern, Germany
Search for more papers by this authorAbstract
Blends of poly(ethylene oxide) (PEO) and novolac type phenolic resin were prepared by a solution cast method using acetonitrile as a solvent. In this work, we have investigated the PEO/phenolic blends having low phenolic content (0 to 30 wt %) with the objective in mind to design a crystallizable component for a shape memory polymer system having adjustable switching temperature. The blends were characterized by Fourier transform infrared (FTIR) spectroscopy, polarized optical microscopy (POM), and differential scanning calorimetry (DSC). The rate of crystallization and crystallinity (calculated from heat of crystallization value) decrease with increase in novolac content. FTIR analysis indicates the existence of H-bonding between hydroxyl groups of novolac and ether groups of PEO. POM studies indicate that size of Maltese cross section decreases with increase in novolac content and in the blends containing higher novolac content less regular leaf like texture was obtained. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
References
- 1 Luo, X.;Zeng, S.;Naibin, Z.;Dezhu, M. Polymer 1994, 35, 2619.
- 2 Guo, Q.;Peng, X.;Wang, Z. Polymer 1991, 32, 53.
- 3 B. Scrosati, Ed. Applications of Electroactive Polymers; Chapman & Hall: New York, 1993; p 251.
- 4 Wieczorek, W.;Raduacha, D.;Zalewska, A.;Stevens, J. K. J Phys Chem B 1998, 102, 8725.
- 5 Abraham, K. M.;Jiang, Z.;Carrol, B. Chem Mater 1997, 9, 1978.
- 6 Chun, B. C.;Cha, S. H.;Chung, Y. C.;Cho, J. W. J Appl Polym Sci 2002, 83, 27.
- 7 Liu, G.;Guan, C.;Xia, H.;Guo, F.;Ding, X.;Peng, Y. Macromol Rapid Commun 2006, 27, 1100.
- 8 Murli, M.;Ratna, D.;Samui, A. B.;Chakraborty, B. C. J. Appl Polym Sci 2007, 103, 1723.
- 9 Ratna, D.;Samui, A. B.;Chakraborty, B. C. Polym Int 2004, 53, 1882.
- 10 Yang, X. Q.;Hanson, L.;McBreen, J.;Okamoto, Y. M. J Power Sources 1995, 54, 198.
- 11 Mishra, R.;Rao, K. J. Solid State Ionics 1998, 106, 113.
- 12 Aranda, P.;Mosqueda, Y.;Perez-Cappe, E.;Ruiz-Hitzky, E. J Polym Sci Part B: Polym Phys 2003, 41, 3249.
- 13 Chen, B.;Evans, J. R. G. J Phys Chem B 2004, 108, 14986.
- 14 Kumar, B.;Scanlon, L. G. Solid State Ionics 1999, 124, 339.
- 15 Song, Y. S. Polym Eng Sci 2006, 46, 1350.
- 16 Zhang, Q.;Archer, L. A. Langmuir 2002, 18, 10435.
- 17 Ratna, D.;Divekar, S.;Samui, A. B.;Chakraborty, B. C.;Banthia, A. K. Polymer 2006, 47, 4068.
- 18 Ratna, D.;Divekar, S.;Sivaraman, P.;Samui, A. B.Chakraborty, B. C. Polym Int 2007, 56, 900.
- 19 Pielichowski, K.;Flejtuch, K. Macromol Mater Eng 2003, 288, 259.
- 20 Babich, M. W.;Hwang, S.;Mounts, R. D. Thermochim Acta 1992, 210, 83.
- 21 Sari, A.;Kaygusuz, K. Sol Energy 2001, 71, 365.
- 22 Sari, A.;Kaygusuz, K. Energy Sources 2000, 23, 117.
- 23 Feldman, D.;Banu, D.; Thermochim Acta 1996, 272, 243.
- 24 Liu, G.;Ding, X.;Cao, Y.;Zheng, Z.;Peng, Y. Macromol Rapid Commun 2005, 26, 649.
- 25 Liu, G.;Ding, X.;Cao, Y.;Zheng, Z.;Peng, Y. Macromolecules 2004, 37, 2228.
- 26 Lendlein, A.;Kelch, S. Angew Chem Int Ed 2002, 41, 2034.
- 27 Lendlein, A.;Kelch, S.;Kratz, K. Kunstoffe 2006, 2, 54.
- 28 Kim, B. S.;Lee, S. H.;Furukawa, F. In Handbook of Condensation Thermoplastic Elastomer; S. Fakirov, Ed.; Wiely-VCH: Weinheim, Germany, 2005; pp 521–566.
- 29 Behl, M.;Lendlein, A. Mater Today 2007, 10, 20.
- 30 Wu, H. D.;Chu, P. P.;Ma, C. M.;Chang, F. C. Macromolecules 1999, 32, 3097.
- 31 Chu, P. P.;Reddy, M. J.;Tsai, J. J Polym Sci Polym Phys 2004, 42, 3866.
- 32 Kosonen, H.;Ruokolanien, J.;Torkkeli, M.;Serima, R.;Nyholm, P.;Ikkala, O. Macromol Chem Phys 2002, 203, 388.
- 33 Kuo, S. W.;Lin, C. L.;Chang, F. C. Macromolecules 2002, 35, 278.
- 34 Alibuddin, S. T.;Wu, L.;Runt, J.;Lin, J. S. Macromolecules 1996, 29, 7527.
- 35 Aranda, P.;Mosqueda, Y.;Perez-Cappe, E.;Ruiz-Hitzky, E. J Polym Sci Part B: Polym Phys 2003, 41, 3249.
- 36 Aranda, P.;Ruiz-Hitzky, E. Chem Mater 1992, 4, 1395.
- 37 Papke, B. L.;Ratner, M. A.;Shriver, D. F. J Phys Chem Solids 1981, 42, 493.
- 38 Quintana, J. R.;Cesteros, C.;Peleteiro, M. C.;Katime, I. Polymer 1991, 32, 2793.
- 39 Liao, B.;Huang, Y.;Cheng, M.;Cong, G. Polym Bull 1996, 36, 79.
- 40 Pedrosa, P.;Pomposo, J. A.;Calahorra, E.;Cortazar, M. Polymer 1995, 36, 3889.
- 41 Zhong, Z.;Guo, Q. J Polym Sci Part A: Polym Chem 1998, 36, 401.
- 42
Chu, P. P.;Wu, H. D.;Lee, C. T.
J Polym Sci Part B: Polym Phys
1998,
36,
1647.
10.1002/(SICI)1099-0488(19980730)36:10<1647::AID-POLB6>3.0.CO;2-M CAS Web of Science® Google Scholar
- 43 Coggeshell, N. D.;Saier, E. L. J Am Chem Soc 1951, 71, 5414.