Molecular weight distribution broadening of polypropylene by periodic switching of hydrogen and catalyst additions
Corresponding Author
M. Al-Haj Ali
Department of Chemical Engineering-King Saud University, Riyadh 11421, Saudi Arabia
Department of Chemical Engineering-King Saud University, Riyadh 11421, Saudi Arabia===Search for more papers by this authorJ. Stroomer
HoSt BV, P.O. Box 920, 7550 AX Hengelo, The Netherlands
Search for more papers by this authorB. Betlem
University of Twente, 7500 AE Enschede, The Netherlands
Search for more papers by this authorG. Weickert
Polymer Reactor Technology GmbH, Mühlenweg 31, D-48683 Ahaus, Germany
Search for more papers by this authorB. Roffel
University of Groningen, NL-9700 AV Groningen, The Netherlands
Search for more papers by this authorCorresponding Author
M. Al-Haj Ali
Department of Chemical Engineering-King Saud University, Riyadh 11421, Saudi Arabia
Department of Chemical Engineering-King Saud University, Riyadh 11421, Saudi Arabia===Search for more papers by this authorJ. Stroomer
HoSt BV, P.O. Box 920, 7550 AX Hengelo, The Netherlands
Search for more papers by this authorB. Betlem
University of Twente, 7500 AE Enschede, The Netherlands
Search for more papers by this authorG. Weickert
Polymer Reactor Technology GmbH, Mühlenweg 31, D-48683 Ahaus, Germany
Search for more papers by this authorB. Roffel
University of Groningen, NL-9700 AV Groningen, The Netherlands
Search for more papers by this authorAbstract
This study presents a feasibility study of the broadening of the polypropylene molecular weight distribution produced using a multisite Ziegler-Natta catalyst in a continuous liquid-pool polymerization reactor. The broadening is achieved by operating the reactor under periodic forcing of both hydrogen and catalyst feed flows. Model-based dynamic optimization is used to determine the cycle period and peak width for these inputs. Through simulation it is shown that limited widening (∼ 30%) of the molecular weight distribution can be achieved in case of a limited removal of hydrogen from the reactor. The results also show that the forced removal of hydrogen from the reactor could potentially double the polydispersity index of the produced polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
References
- 1
Meira, G. R.
J Macromol Sci Rev Macromol Chem
1981,
20,
207.
10.1080/00222358108080919 Google Scholar
- 2 Murray, R. E.;Mawson, S. U.S. Pat. 0,031,697 ( 2001).
- 3 Loveday, D. R.;McConville, D. H. U.S. Pat. 0,031,695 ( 2001).
- 4 Beigzadeh, D.;Soares, J. B. P.;Hamielec, A. J Appl Polym Sci 1998, 71, 1753.
- 5 Heiland, K.;Kaminsky, W. Makromol Chem Macromol Chem Phys 1992, 193, 601.
- 6
Kim, J. D.;Soares, J. B. P.;Rempel, G. L.
Macromol Rapid Commun
1998,
19,
197.
10.1002/(SICI)1521-3927(19980401)19:4<197::AID-MARC197>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 7 D'Agnillo, L.;Soares, J. B. P.;Penlidis, A. Polym Int 1998, 47, 351.
- 8 Cho, H. S.;Chungand, J. S.;Lee, W. Y. J Mol Catal A 2000, 159, 203.
- 9 Shamshoum, E. S.;Chenand, H.;Margarito, L. U.S. Pat. 6,653,254 ( 2003).
- 10 Nowlin, T. E.;Schregenberger, S. D.;Shirodkarand, P. P.;Tsien, G. O. U.S. Pat. 6,410,474 ( 2002).
- 11 Soares, J. B. P.;Penlidis, A. In Metallocene-Based Polyolefins: Preparation, Properties and Technology; J. Scheirsand; W. Kaminsky, Eds.; Wiley: Chichester, 2000; pp 237–267.
- 12 Schiffino, R. S. U.S. Pat. 5,475,067 ( 1995).
- 13 Covezziand, M.;Mei, G. Chem Eng Sci 2001, 56, 4059.
- 14 Rernandes, F. A. N.;Lona, L. M. F. J Appl Polym Sci 2004, 93, 1042.
- 15 Al-Bastaki, N. M.;Abbas, A. Sep Sci Technol 1998, 33, 2531.
- 16 Wang, J. J Chem Phys 2003, 119, 3626.
- 17 Silveston, P. L.;Hanika, J. Can J Chem Eng 2004, 82, 1105.
- 18 Chmiel, K.;Konieczny, A.;Palica, M.;Jarzebski, A. B. Chem Eng Sci 2005, 60, 2845.
- 19 Douglas, J. M. Process Dynamics and Control; Prentice-Hall: Englewood Cliffs, NJ, 1972.
- 20 Fjeld, M.;Kristiansen, T. Int J Control 1969, 10, 601.
- 21 Gugliotta, L. M.;Couso, D. A.;Meira, G. R. J Appl Polym Sci 1991, 42, 2903.
- 22 Ray, W. H. IEC Process Des Dev 1968, 7, 422.
- 23 Meira, G. R.;Johnson, A. F.;Ramsay, J. ACS Symposium Series, Vol. 104; J. V. Henderson; T. C. Bouton, Eds. American Chemical Society: Washington, D.C., 1979; Chap. 11, pp 253–266.
- 24 Kawakamiand, W.;Machi, S. AIChE J 1973, 19, 94.
- 25 Chen, H. T.;Kwan, C. N.;Chartier, P. A. AIChE J 1980, 26, 672.
- 26 Claybaugh, B.;Griffin, J. R.;Watson, A. U.S. 3,472,829 ( 1969).
- 27 Lee, C. K.;Bailey, J. E. AIChE J 1974, 20, 74.
- 28 Nele, M.;Pinto, J. C. J Appl Polym Sci 2000, 77, 437.
- 29 Al-haj Ali, M. Ph.D. Thesis, Twente University, Enschede, The Netherlands, 2006.
- 30 Weickert, G. Ind Eng Chem Res 1998, 37, 799.
- 31 Al-haj Ali, M.;Betlem, B.;Roffel, B.;Weickert, G. AIChE J 2006, 52, 1866.
- 32 Stroomer, J. M.Sc. Thesis, Twente University, Enschede, The Netherlands, 2005.
- 33 T. F. Edgar; D. M. Himmelblau, Eds. Optimization of Chemical Processes; McGraw-Hill: Singapore, 1988.
- 34 Ray, W. H. Advanced Process Control; McGraw-Hill: New York, 1981.
- 35 Soares, J. B. P. Chem Eng Sci 2001, 56, 4131.
- 36 Busico, V.;Cipulloand, R.;Corradini, P. Macromol Chem Phys 1993, 194, 1079.
- 37 Samson, J. J. C.;Weickert, G.;Heerze, A.;Westerterp, K. R. AIChE J 1998, 44, 1424.
- 38 Samson, J. J. C.;Bosman, P. J.;Weickert, G.;Westerterp, K. R. J Polym Sci Part A: Polym Chem 1999, 37, 219.
- 39 Albizzati, E.;Gianinni, U.;Collina, G.;Noristi, L.;Resconi, L. In Polypropylene Handbook; E. Moore, Ed.; Carl Hanser Verlag, 1996.