Melt rheology and morphology of LLDPE/EVA blends: Effect of blend ratio, compatibilization, and dynamic crosslinking
K. A. Moly
B K. College, Amalagiry P.O., Kottayam, Kerala, India
Search for more papers by this authorS. S. Bhagawan
Propellent Engineering Division, Vikram Sarabhai Space Centre Thiruvananthapuram 695022
Search for more papers by this authorG. Groeninckx
Katholieke Univ Leuven, Department of Chemistry, Lab Macromol Struct Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
Search for more papers by this authorCorresponding Author
S. Thomas
School of Chemical Sciences, Mahatma Gandhi University, Priyadharshini Hills, P.O. Kottayam 686560 Kerala, India
School of Chemical Sciences, Mahatma Gandhi University, Priyadharshini Hills, P.O. Kottayam 686560 Kerala, India===Search for more papers by this authorK. A. Moly
B K. College, Amalagiry P.O., Kottayam, Kerala, India
Search for more papers by this authorS. S. Bhagawan
Propellent Engineering Division, Vikram Sarabhai Space Centre Thiruvananthapuram 695022
Search for more papers by this authorG. Groeninckx
Katholieke Univ Leuven, Department of Chemistry, Lab Macromol Struct Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
Search for more papers by this authorCorresponding Author
S. Thomas
School of Chemical Sciences, Mahatma Gandhi University, Priyadharshini Hills, P.O. Kottayam 686560 Kerala, India
School of Chemical Sciences, Mahatma Gandhi University, Priyadharshini Hills, P.O. Kottayam 686560 Kerala, India===Search for more papers by this authorAbstract
The melt rheological properties of linear low-density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were investigated with special reference to the effect of blend ratio, temperature, shear rate, compatibilization, and dynamic vulcanization. The melt viscosity of the blends determined with a capillary rheometer is found to decrease with an increase of shear rate, which is an indication of pseudoplastic behavior. The viscosity of the blend was found to be a nonadditive function of the viscosities of the component polymers. A negative deviation was observed because of the interlayer slip between the polar EVA and the nonpolar LLDPE phases. The melt viscosity of these blends decreases with the increased concentration of EVA. The morphology of the extrudate of the blends at different shear rates and blend ratios was studied and the size and distribution of the domains were examined by scanning electron microscopy. The morphology was found to depend on shear rate and blend ratio. Compatibilization of the blends with phenolic- and maleic-modified LLDPE increased the melt viscosity at lower wt % of compatibilizer and then leveled off. Dynamic vulcanization is found to increase the melt viscosity at a lower concentration of DCP. The effect of temperature on melt viscosity of the blends was also studied. Finally, attempts were made to correlate the experimental data on melt viscosity and cocontinuity region with different theoretical models. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3210–3225, 2002
References
- 1 Caley, J. F.; Corossan, S. C. Polym Eng Sci 1988, 21, 249.
- 2 Mukhopadhyay, P.; Das, C. K. Plast Rubber Proc Appl 1988, 9, 141.
- 3 Heitmiller, R. F.; Naar, R. Z.; Zubusky, H. H. J Appl Polym Sci 1964, 8, 873.
- 4
Weeks, D. J.;
Allen, W. J.
Mech Eng Sci
1962,
4,
380.
10.1243/JMES_JOUR_1962_004_051_02 Google Scholar
- 5 Brydson, J. A. Flow Properties of Polymer Melts; George Godwin Ltd.: London, 1981.
- 6 Danesi, S.; Porter, R. S. Polymer 1978, 19, 448.
- 7 Utracki, L. A.; Kamal, M. R. Polym Eng Sci 1982, 26, 96.
- 8 Kim, Y. J.; Shin, G. S.; Lee, I. T.; Kim, B. K. J Appl Polym Sci 1993, 47, 295.
- 9 Koshy, A. T.; Kuriakose, B.; Premalatha, C. K.; Thomas, S. J Appl Polym Sci 1993, 49, 901.
- 10 Varkey, J. T.; Thomas, S.; Someswara, R. J Appl Polym Sci 1995, 56, 451.
- 11 George, J.; Ramamurthy, K.; Varughese, K. T.; Thomas, S. J Polym Sci, Polym Phys Ed 2000, 38, 1104.
- 12 George, S.; Ramamurthy, K.; Anand, J.S.; Groeninckx, G.; Varughese, K. T.; Thomas, S. Polymer 1999, 40, 4325.
- 13
Varghese, K. T.;
De, P. P.;
Nando, G. B.;
De, S. K.
J Vinyl Technol
1987,
9,
161.
10.1002/vnl.730090406 Google Scholar
- 14 Varghese, K. T. J Appl Polym Sci 1990, 39, 205.
- 15 Akhtar, S.; Kuriakose, B.; De, P. P.; De, S. K. Plast Rubber Process Appl 1987, 7, 119.
- 16 Kuriakose, B.; Kaust Gummi Kunsts 1984, 37, 1044.
- 17 Duvdevani, L.; Agaarwal, P. K.; Lundberg, R. D. Polym Eng Sci 1982, 22 (8), 499.
- 18 Kim, B. K.; Jeong, H. M.; Lee, Y. H. J Appl Polym Sci 1990, 40, 1805.
- 19 Miettinen, R. M. H.; Seppala, J. V.; Ikkala, O. T.; Reima, I. T. Polym Eng Sci 1994, 334 (5), 395.
- 20 Germain, Y.; Ernst, B.; Genelot, O.; Dhamini, L. J Rheol 1994, 38 (3), 681.
- 21 Valenza, A.; Acierno, D. Eur Polym J 1994, 30 (10), 1121.
- 22 Joshi, M.; Maiti, S. N.; Misra, A. J Appl Polym Sci 1992, 15, 1837.
- 23 Oommen, Z.; Premalatha, C. K.; Kuriakose, B.; Thomas, S. Polymer 1997, 38, 5611.
- 24 Okoroafar, E. U.; Villemuire, J. P.; Agassant, J. F. Polymer 1992, 33 (24), 5264.
- 25 Ha, C. S.; Kim, S. C. J Appl Polym Sci 1988, 35, 2211.
- 26 Kuriakose, B.; De, S. K. Polym Eng Sci 1988, 25 (10), 630.
- 27 Thomas, S.; Kuriakose, B.; Guptha, B. R.; De, S. K. Plast Rubber Proc Appl 1986, 6 (1), 85.
- 28 Han, P. K.; White, J. L.; Rubber Chem Technol 1995, 68, 728.
- 29 Coran, A.Y. In Handbook of Elastomers—Development and Technology; A. K. Bhowmick, H. L. Stephens, Eds.; Marcel Dekker: New York, 1988.
- 30 Varkey, J. T.; Rao, S. S.; Thomas, S. Polym Plast Technol Eng 1996, 35, 1.
- 31 Han, C. D.; Kim, Y. W. J Appl Polym Sci 1975, 19, 2831.
- 32 Shah, C. K. Polym Eng Sci 1976, 16, 742.
- 33 Carley, J. F. Reprints STP Reg Conf Plast Progr Proc 1980, 285.
- 34 Utracki, L. A.; Sammut, P. Polym Eng Sci 1988, 28, 1405.
- 35 Akhtar, S.; Kuriakose, B.; De, P. P.; De, S. K. Plast Rubber Proc Appl 1987, 7, 11.
- 36 Sood, R.; Kulkarni, M. G.; Dutta, A.; Meshelkar, R. A. Polym Eng Sci 1988, 28 (1), 20.
- 37 Oommen, Z.; Thomas, S; Nair, M. R. G. Polym Eng Sci 1996, 36, 151.
- 38 Asalatha, R.; Kumaran, G.; Thomas, S. Rubber Chem Technol 1995, 68, 671.
- 39 Brown, H. R.; Yang, A. C. M.; Russel, T. P.; Volksen, W.; Kramer, E. J. Polymer 1988, 29, 1807.
- 40 Yukioka, S.; Nagato, K.; Inoue, T. Polymer 1992, 33, 1171.
- 41 Felix, J. M.; Gatenholm, P. ACS Polym Mater Sci Eng Div Proc 67, Washington, DC, Aug. 1992.
- 42 Gatenholm, P.; Felix, J. M. New Advances in Polyolefins; T. C. Chung, Ed.; Plenum Press: New York, 1993; p 237.
- 43 Sundarraj, U.; Macosko, C. W. Macromolecules 1995, 28 (8), 2647.
- 44 Chandramouli, K.; Jabarin, S. A. Adv Polym Technol 1995, 4 (1), 35.
- 45 Liao, F. S.; Su, A. C.; Hsu, T. C. J. Polymer 1994, 35, 2579.
- 46 Kuriakose, B.; De, S. K.; Bhagawan, S. S.; Sivaramakrishnan, R.; Athithan, S. K. J Appl Polym Sci 1986, 32, 5506.
- 47 Varughese, K. T.; De, P. P.; Sanyal, S. K. Die Angew Makromol Chem 1990, 182, 73.
- 48 Favis, B. D.; Chalifoux, J. P. Polymer 1988, 29, 1761.
- 49 Elemans, P. H. M. Ph.D. Thesis, TU Eindhoven, The Netherlands, 1989.
- 50 Everaert, V.; Aerts, L.; Groeninckx, G. Polymer 1999, 40, 6627.
- 51 Jordhamo, G. M.; Manson, J. A.; Sperling, L. H. Polym Eng Sci 1986, 26, 517.
- 52 Chen, T. H.; Su, A. C. Polymer 1993, 34, 4826.