Green synthesis of titanium nanoparticles using a sustainable microalgal metabolite solution for potential biotechnological activities
Tugce Mutaf
Department of Bioengineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorGulizar Caliskan
Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
Search for more papers by this authorHulki Ozel
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorGulsah Akagac
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorSuphi Ş. Öncel
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorCorresponding Author
Murat Elibol
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Correspondence
Murat Elibol, Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
Email: [email protected]
Search for more papers by this authorTugce Mutaf
Department of Bioengineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorGulizar Caliskan
Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
Search for more papers by this authorHulki Ozel
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorGulsah Akagac
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorSuphi Ş. Öncel
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Search for more papers by this authorCorresponding Author
Murat Elibol
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Correspondence
Murat Elibol, Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
Email: [email protected]
Search for more papers by this authorAbstract
In this study, green synthesis of titanium nanoparticles using liquids metabolites of microalgae, Porphyridium cruentum, was performed to evaluate potential biotechnological activity. The rising rates of multidrug-resistant bacteria and the number of cancer patients are driving the search for novel antimicrobial and anticancer agents to combat this threat. In recent years, with the increasing number of studies, nanomaterials are starting to be better understood and are emerging as a solution to this problem. Especially, green synthesized nanoparticles with anticancer, antioxidant, and antimicrobial activities have potential in biomedical applications because of their eco-friendly and biocompatible nature. Scanning electron microscopy (SEM) images revealed that spherical shaped Ti-NPs' size ranged from 62 to 133 nm. This study aimed to assess the effectiveness of antibacterial activity of Ti-NPs and chitosan-coated Ti-NPs against Escherichia coli and Staphylococcus aureus using disc diffusion assay. It demonstrated the concentration-dependent cytotoxic effect of Ti-NPs of human prostate adenocarcinoma (PC-3), human alveolar adenocarcinoma (A549), and human mammary gland adenocarcinoma (MDA-MB) cancer cell lines. This present study shows promising outcomes for possible future applications of synthesized Ti-NPs as a novel antibacterial and cytotoxic agent for biomedical applications such as drug delivery, biosensor, and hyperthermia.
CONFLICT OF INTEREST STATEMENT
The authors declare no competing financial interest. We know of no conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. As corresponding author, on the behalf of all authors, I confirm that the manuscript has been read and approved for submission by all the named authors.
REFERENCES
- 1Anbunami D, Dhandapani KV, Manoharan J, et al. Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J King Saud Univ Sci. 2022; 34(3):101896. doi:10.1016/j.jksus.2022.101896
- 2Subhapriya S, Gomathipriya P. Green synthesis of titanium dioxide (TiO2) nanoparticles by trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog. 2018; 116: 215-220. doi:10.1016/j.micpath.2018.01.027
- 3Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. 2021; 199(5): 1812-1822.
- 4Wypij M, Jedrzejewski T, Trzcin'ska-Wencel J, Ostrowski M, Rai M, Golin'ska P. Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol. 2021; 12: 12. doi:10.3389/fmicb.2021.632505
- 5Bavanilatha M, Yoshitha L, Nivedhitha S, Shithtya S. Bioactive studies of TiO2 nanoparticles synthesized using Glycyrrhiza glabra. Biocatal Agric Biotechnol. 2019; 19:101131. doi:10.1016/j.bcab.2019.101131
- 6Shavandi A, Saeedi P, Azam Ali M, Jalalvandi E. Green synthesis of polysaccharide based inorganic nanoparticles and biomedical aspects. Funct Polysaccharides Biomed Appl. 2019; 267-303. doi:10.1016/B978-0-08-102555-0.00008-X
10.1016/B978-0-08-102555-0.00008-X Google Scholar
- 7Mora-Godinez S, Abril-Martinez F, Pacheco A. Green synthesis of silver nanoparticles using microalgae acclimated to high CO2. Mater Today: Proc. 2022; 48: 5-9.
- 8Yugay YA, Usoltseva RV, Silant'ev VE, et al. Synthesis of bioactive silver nanoparticles using alginate, fucoidan and laminaran from brown algae as a reducing and stabilizing agent. Carbohydr Polym. 2020; 245:116547. doi:10.1016/j.carbpol.2020.116547
- 9Anthony KJP, Murugan M, Gurunathan S. Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J Ind Eng Chem. 2014; 20(4): 1505-1510. doi:10.1016/j.jiec.2013.07.039
- 10Fall A, Ngom I, Bakayoko M, et al. Biosynthesis of zinc oxide nanoparticles using extracts of Moringa Oleifera: structural & optical properties. Mater Today: Proc. 2021; 36: 349-356.
- 11Mansoor A, Khurshid Z, Mansoor E, Khan MT, Ratnayake J, Jamal A. Effect of currently available nanoparticle synthesis routes on their biocompatibility with fibroblast cell lines. Molecules. 2022; 27(20): 6972. doi:10.3390/molecules27206972
- 12Rashid MM, Tavcer PF, Tomsic B. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials. 2021; 11(9): 2354. doi:10.3390/nano11092354
- 13Zane A, Zuo R, Villamena FA, et al. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations. Int J Nanomedicine. 2016; 11: 6459-6470. doi:10.2147/IJN.S117584
- 14Alavi M, Webster TJ, Li L. Theranostic safe quantum dots for anticancer and bioimaging applications. Micro Nano Bio Aspects. 2022; 1(2): 1-11.
- 15Çeşmeli S, Avci CB. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target. 2019; 27(7): 762-766. doi:10.1080/1061186X.2018.1527338
- 16Gallon SMN, Alpaslan E, Wang M, et al. Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Mater Sci Eng a. 2019; C99: 685-695.
10.1016/j.msec.2019.01.134 Google Scholar
- 17El-Batal AI, Al-Hazmi NE, Mosallam FM, El-Sayyad GS. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb Pathog. 2018; 118: 159-169. doi:10.1016/j.micpath.2018.03.013
- 18Patel AK, Laroche C, Marcati A, et al. Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour Technol. 2013; 145: 345-350. doi:10.1016/j.biortech.2012.12.038
- 19Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv. 2016; 34(7): 1225-1244. doi:10.1016/j.biotechadv.2016.08.004
- 20Han S, Jeon MS, Heo YM, Kim S, Choi Y. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in porphyridium cruentum UTEX 161. Bioresour Technol. 2020; 302:122791. doi:10.1016/j.biortech.2020.122791
- 21Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order chroococcales). Bacteriol Rev. 1971; 35(2): 171-205. doi:10.1128/br.35.2.171-205.1971
- 22Ruiz-Ruiz F, Benavides J, Rito-Palomares M. Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: practical experiences. Process Biochem. 2013; 48(4): 738-745. doi:10.1016/j.procbio.2013.02.010
- 23Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Div Biochem. 1956; 28(3): 350-335. doi:10.1021/ac60111a017
- 24Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin-phenol reagent. J Biochem Eng. 1951; 193(1): 265-275. doi:10.1016/S0021-9258(19)52451-6
- 25Sun Y, Wang S, Zheng J. Biosynthesis of TiO2 nanoparticles and their application for treatment of brain injury-an in-vitro toxicity study towards central nervous system. J Photochem Photobiol. 2019; 194: 1-5. doi:10.1016/j.jphotobiol.2019.02.008
- 26Sobhani Z, Samani SM, Montaseri H, Khezri E. Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull. 2017; 7(3): 427-432. doi:10.15171/apb.2017.051
- 27Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res. 2012; 14(11): 964. doi:10.1007/s11051-012-0964-8
- 28Mohammadi-Samani S, Miri R, Salmanpour M, Khalighian N, Sotoudeh S, Erfani N. Preparation and assessment of FA-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res Pharm Sci. 2013; 8(1): 25-33.
- 29Caliskan G, Mutaf T, Agba HC, Elibol M. Green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobiol J. 2022; 39(1): 83-96. doi:10.1080/01490451.2021.2008549
- 30Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK. Pigment mediated biogenic synthesis of silver nanoparticles using diatom amphora sp. and its antimicrobial activity. J Saudi Chem Soc. 2015; 19(6): 661-666. doi:10.1016/j.jscs.2014.06.005
- 31Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63. doi:10.1016/0022-1759(83)90303-4
- 32Kirthi AV, Rahuman AA, Rajakumar G, et al. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett. 2011; 35(17-18): 2745-2747. doi:10.1016/j.matlet.2011.05.077
10.1016/j.matlet.2011.05.077 Google Scholar
- 33Peiris M, Guansekera T, Jayaweera P, Fernando S. TiO2 nanoparticles from Baker's yeast: a potent antimicrobial. J Microbiol Biotechnol. 2018; 28(10): 1664-1670. doi:10.4014/jmb.1807.07005
- 34Zafar N, Uzair B, Niazi MBK, et al. Fabrication & characterization of chitosan coated biologically synthesized TiO2 nanoparticles against pdr E. coli of veterinary origin. Adv Polym Technol. 2020; 2020:8456024. doi:10.1155/2020/8456024
- 35Dikshit PK, Kumar J, Das AK, et al. Green synthesis of metallic nanoparticles: applications and limitations. Catalysts. 2021; 11(8): 902. doi:10.3390/catal11080902
- 36Frank LA, Onzi GR, Morawski AS, Pohlmann AR, Guterres SS, Contri RV. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym. 2019; 147:104459. doi:10.1016/j.reactfunctpolym.2019.104459
- 37Dobrucka R. Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba. Iran J Pharm Res. 2017; 16: 753-759.
- 38Thakur BK, Kumar A, Kumar D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African J Bot. 2019; 124: 223-227. doi:10.1016/j.sajb.2019.05.024
- 39Rao NR, Riyazuddin BP, Ahmad N, et al. Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: assessment of its antimicrobial and anticancer activity. Saudi J Biol Sci. 2019; 26(7): 1385-1391. doi:10.1016/j.sjbs.2019.09.005
- 40Irshad MA, Nawaz R, Rehman MZU, et al. Synthesis, characterization, and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicol Environ Saf. 2021; 212:111978. doi:10.1016/j.ecoenv.2021.111978
- 41Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 57. doi:10.3390/pharmaceutics10020057
- 42Santhoskumar T, Rahuman AA, Jayaseelan C, et al. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med. 2014; 7(12): 968-976. doi:10.1016/S1995-7645(14)60171-1
- 43Özel N, Elibol M. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydr Polym. 2021; 262:117942. doi:10.1016/j.carbpol.2021.117942
- 44Al-Zahrani SA, Bhat RS, Al Rashed SA, et al. Green-synthesized silver nanoparticles with aqueous extract of green algae Chaetomorpha ligustica and its anticancer potential. Green Process Synth. 2021; 10(1): 711-721. doi:10.1515/gps-2021-0067
- 45Hussein HA, Mohamad H, Ghazaly MM, Laith AA, Abdullah MA. Anticancer and antioxidant activities of Nannochloropsis oculata and chlorella sp. extracts in co-application with silver nanoparticle. J King Saud Univ Sci. 2020; 32(8): 3486-3494. doi:10.1016/j.jksus.2020.10.011
- 46Hamouda RA, El Maksoud AIA, Wageed M, et al. Characterization and anticancer activity of biosynthesized au/cellulose nanocomposite from Chlorella vulgaris. Polymers. 2021; 13(19): 3340. doi:10.3390/polym13193340
- 47Singh AK, Tiwari R, Kumar V, et al. Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. J Photochem Photobiol B Biol. 2017; 166: 202-211. doi:10.1016/j.jphotobiol.2016.11.020
- 48Algotiml R, Gab-Alla A, Seoudi R, Abulrees HH, El-Readi MZ, Elbanna K. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci Rep. 2022; 12(1): 2421. doi:10.1038/s41598-022-06412-3
- 49Gurunathan S, Han JW, Dayem AA, et al. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem. 2013; 19(5): 1600-1605. doi:10.1016/j.jiec.2013.01.029