Influence of nanoparticle and channel arc structure on comprehensive performance of nanofluids in curved tiered microchannel heat sinks
Yuwei Wang
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorXiaoyang Li
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorCorresponding Author
Cong Qi
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, China
Correspondence
Cong Qi, School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China.
Email: [email protected]
Search for more papers by this authorYuwei Wang
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorXiaoyang Li
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorCorresponding Author
Cong Qi
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, China
Correspondence
Cong Qi, School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China.
Email: [email protected]
Search for more papers by this authorAbstract
In order to improve the heat dissipation of the electrical components, a curved tiered microchannel heat sink (TMCHS) was proposed and optimized and applied to cool the electrical components together with nanofluids. Influence of channel radian (φ = 0°, 75°, 135°, 180°), arc number (n = 0, 2, 3, 4), and nanoparticle concentration (w = 0.0%, 0.1%, 0.3%, 0.5%) on flow and heat transfer characteristics of nanofluids in curved TMCHS was numerically investigated. Comprehensive evaluation coefficient comprehensive evaluation factor (PEC) was used to evaluate the thermo-hydraulic performance of TMCHS and nanofluids. Results indicated that the greater the radian and arc number, the better the thermal performance of TMCHS. The overall performance of TMCHS is the best when the radian is 180° and the arc number is 4. Results in this paper provide important technical guidance for the application of curved tiered microchannel heat sinks and nanofluids to the field of thermal management of electronic components.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
REFERENCES
- 1Ariyo DO, Bello-Ochende T. Constructal design of two-phase stacked microchannel heat exchangers for cooling at high heat flux. Int Commun Heat Mass Transf. 2021; 125(1-16):105294. doi:10.1016/j.icheatmasstransfer.2021.105294
- 2Chen M, Pang D, Mandal J, et al. Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 2021; 21(3): 1412-1418. doi:10.1021/acs.nanolett.0c04241
- 3Xuan Z, Zhai Y, Li Y, Li Z, Wang H. Guideline for selecting appropriate mixing ratio of hybrid nanofluids in thermal management systems. Powder Technol. 2022; 403(1-12):117425. doi:10.1016/j.powtec.2022.117425
- 4Lu W, Zhang R, Toan S, et al. Microchannel structure design for hydrogen supply from methanol steam reforming. Chem Eng J. 2022; 429(1-12):132286. doi:10.1016/j.cej.2021.132286
- 5Gao J, Hu Z, Yang Q, Liang X, Wu H. Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress. Therm Sci Eng Prog. 2022; 29(1-17):101203. doi:10.1016/j.tsep.2022.101203
- 6Monavari A, Jamaati J, Bahiraei M. Thermohydraulic performance of a nanofluid in a microchannel heat sink: use of different microchannels for change in process intensity. J Taiwan Inst Chem E. 2021; 125: 1-14. doi:10.1016/j.jtice.2021.05.045
- 7Zhang F, Wu B, Du B. Heat transfer optimization based on finned microchannel heat sink. Int J Therm Sci. 2022; 172(1-13):107357. doi:10.1016/j.ijthermalsci.2021.107357
- 8Wang C, Ji X, Yang B, Zhang R, Yang D. Study on heat transfer and dehumidification performance of desiccant coated microchannel heat exchanger. Appl Therm Eng. 2021; 192(1-11):116913. doi:10.1016/j.applthermaleng.2021.116913
- 9Parlak M, Özsunar A, Koşar A. High aspect ratio microchannel heat sink optimization under thermally developing flow conditions based on minimum power consumption. Appl Therm Eng. 2022; 201(1-16):117700. doi:10.1016/j.applthermaleng.2021.117700
- 10Vajdi M, Moghanlou FS, Niari ER, Asl MS, Shokouhimehr M. Heat transfer and pressure drop in a ZrB2 microchannel heat sink: a numerical approach. Ceram Int. 2020; 46(2): 1730-1735. doi:10.1016/j.ceramint.2019.09.146
- 11Derakhshanpour K, Kamali R, Eslami M. Improving performance of single and double-layered microchannel heat sinks by cylindrical ribs: a numerical investigation of geometric parameters. Int Commun Heat Mass Transf. 2021; 126(1-15):116913. doi:10.1016/j.icheatmasstransfer.2021.105440
- 12Kose HA, Yildizeli A, Cadirci S. Parametric study and optimization of microchannel heat sinks with various shapes. Appl Therm Eng. 2022; 211(1-17):118368. doi:10.1016/j.applthermaleng.2022.118368
- 13Ramesh KN, Sharma TK, Rao GAP. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review. Arch Comput Method E. 2020; 28(4): 3135-3165. doi:10.1007/s11831-020-09495-1
- 14Zhu Q, Xia H, Chen J, et al. Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes. Int J Therm Sci. 2021; 161(1-14):106721. doi:10.1016/j.ijthermalsci.2020.106721
- 15Abo-Zahhad EM, Ookawara S, Radwan A, Elkady MF, El-Shazly AH. Optimization of stepwise varying width microchannel heat sink for high heat flux applications. Case Stud Therm Eng. 2020; 18(1-8):100587. doi:10.1016/j.csite.2020.100587
- 16Wang SL, Zhu JF, An D, et al. Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design. Int J Therm Sci. 2022; 171(1-17):107229. doi:10.1016/j.ijthermalsci.2021.107229
- 17Lori MS, Vafai K. Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs. Appl Therm Eng. 2022; 205(1-24):118059. doi:10.1016/j.applthermaleng.2022.118059
- 18Feng Z, Hu Z, Lan Y, Huang Z, Zhang J. Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink. Int J Therm Sci. 2021; 165(1-16):106956. doi:10.1016/j.ijthermalsci.2021.106956
- 19Pan YH, Zhao R, Fan XH, Nian YL, Cheng WL. Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink. Int J Heat Mass Transf. 2020; 163(1-18):120461. doi:10.1016/j.ijheatmasstransfer.2020.120461
- 20Wang TH, Wu HC, Meng JH, Yan WM. Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm. Int J Heat Mass Transf. 2020; 149(1-17):119217. doi:10.1016/j.ijheatmasstransfer.2019.119217
- 21Zheng R, Wu Y, Li Y, Wang G, Ding G, Sun Y. Development of a hierarchical microchannel heat sink with flow field reconstruction and low thermal resistance for high heat flux dissipation. Int J Heat Mass Transf. 2022; 182(1-10):121925. doi:10.1016/j.ijheatmasstransfer.2021.121925
- 22Drummond KP, Back D, Sinanis MD, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int J Heat Mass Transf. 2018; 117: 319-330. doi:10.1016/j.ijheatmasstransfer.2017.10.015
- 23Zhou J, Chen X, Zhao Q, Lu M, Hu D, Li Q. Flow thermohydraulic characterization of hierarchical-manifold microchannel heat sink with uniform flow distribution. Appl Therm Eng. 2021; 198(1-18):117510. doi:10.1016/j.applthermaleng.2021.117510
- 24Bahiraei M, Heshmatian S. Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers. Appl Therm Eng. 2017; 127: 1233-1245. doi:10.1016/j.applthermaleng.2017.08.136
- 25Zhang Y, Pan M. Impact of N-structure geometry on heat transfer in a microchannel heat exchanger. Chem Eng Technol. 2021; 44(4): 690-697. doi:10.1002/ceat.202000131
- 26Liu F, Jing D. Hydrothermal performances of symmetric and asymmetric divergent-convergent microchannel heat sinks. Int Commun Heat Mass Transf. 2021; 127(1-9):105566. doi:10.1016/j.icheatmasstransfer.2021.105566
- 27Peng Y, Yang X, Li Z, Li S, Cao B. Numerical simulation of cooling performance of heat sink designed based on symmetric and asymmetric leaf veins. Int J Heat Mass Transf. 2021; 166(1-16):120721. doi:10.1016/j.ijheatmasstransfer.2020.120721
- 28He W, Mashayekhi R, Toghraie D, Akbari OA, Li Z, Tlili I. Hydrothermal performance of nanofluid flow in a sinusoidal double layer microchannel in order to geometric optimization. Int Commun Heat Mass Transf. 2020; 117(1-9):104700. doi:10.1016/j.icheatmasstransfer.2020.104700
- 29Khan MZU, Younis MY, Akram N, et al. Investigation of heat transfer in wavy and dual wavy micro-channel heat sink using alumina nanoparticles. Case Stud Therm Eng. 2021; 28(1-13):101515. doi:10.1016/j.csite.2021.101515
- 30Akram J, Akbar NS, Alansari M, Tripathi D. Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel. Int Commun Heat Mass Transf. 2022; 136(1-15):106208. doi:10.1016/j.enconman.2015.08.042
- 31Zhai Y, Li L, Wang J, Li Z. Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids. Powder Technol. 2019; 343: 215-224. doi:10.1016/j.powtec.2018.11.051
- 32He Y, Hu Y, Li H. An Ag@TiO2/ethylene glycol/water solution as a nanofluid-based beam splitter for photovoltaic/thermal applications in cold regions. Energ Conver Manage. 2019; 198(1-8):111838. doi:10.1016/j.enconman.2019.111838
- 33Kristiawan B, Rifa'i AI, Enoki K, Wijayanta AT, Miyazaki T. Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube. Powder Technol. 2020; 376: 254-262. doi:10.1016/j.powtec.2020.08.020
- 34Mehryan SAM, Ghalambaz M, Chamkha AJ, Izadi M. Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: a local thermal non-equilibrium model. Powder Technol. 2020; 367: 443-455. doi:10.1016/j.powtec.2020.04.005
- 35Jung SY, Park H. Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink. Int J Heat Mass Transf. 2021; 179(1-10):121729. doi:10.1016/j.ijheatmasstransfer.2021.121729
- 36Mei S, Qi C, Luo T, Zhai X, Yan Y. Effects of magnetic field on thermo-hydraulic performance of Fe3O4-water nanofluids in a corrugated tube. Int J Heat Mass Transf. 2019; 128: 24-45. doi:10.1016/j.ijheatmasstransfer.2018.08.071
- 37Farrukh B M, Chen GM, Tso CP. Viscous dissipation effect on CuO-Water nanofluid-cooled microchannel heat sinks. Case Stud Therm Eng. 2021; 26(1-15):101159. doi:10.1016/j.csite.2021.101159
- 38Akram J, Akbar NS, Tripathi D. Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel. Arab J Sci Eng. 2022; 47(6): 7487-7503. doi:10.1007/s13369-021-06173-7
- 39Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019; 130: 1322-1342. doi:10.1016/j.ijheatmasstransfer.2018.11.020
- 40Wang Y, Qi C, Ding Z, Tu J, Zhao R. Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube. Powder Technol. 2021; 392: 570-586. doi:10.1016/j.powtec.2021.07.066
- 41Mansoor MM, Wong KC, Siddique M. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels. Int Commun Heat Mass Transf. 2012; 39(2): 291-297. doi:10.1016/j.icheatmasstransfer.2011.12.002
- 42Mei S, Qi C, Liu M, Fan F, Liang L. Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube. Int J Heat Mass Transf. 2019; 134: 707-721. doi:10.1016/j.ijheatmasstransfer.2019.01.088