Hydrophobic Poly(divinylbenzene) Polymer-Supported Ruthenium Catalysts for Efficient Hydrogenation of Pyridines in Water
Qingsong Luo
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Hai Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYating Lv
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJinghao Fan
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHuixin Wu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorWei Fang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLujie Liu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorPei Liu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLiang Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Feng-Shou Xiao
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQingsong Luo
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Hai Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYating Lv
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJinghao Fan
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHuixin Wu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorWei Fang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLujie Liu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorPei Liu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLiang Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Feng-Shou Xiao
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
Gas–liquid–solid triphase reactions are limited by poor gas solubility and mass transfer, especially in water. The low solubility of hydrogen in water severely hinders the hydrogenation, therefore requiring high temperature and pressure to increase the activity, which have safety and cost concerns. Herein, we report a hydrophobic poly(divinylbenzene) polymer-supported Ru nanoparticle catalyst (Ru/PDVB) with both high activity and excellent stability for the hydrogenation of pyridines in water, even at ambient hydrogen pressure (0.1 MPa). The average turnover frequency (ATOF) of the Ru/PDVB (836.8 mol molRu−1 h−1) is about 6.0 and 768.0-fold higher than those of traditional Ru/C and commercial Raney Ni catalysts under equivalent reaction conditions. Mechanistic studies reveal that the hydrophobic polymer prevents filling of water in the nanopores of PDVB, allowing hydrogen enrichment to boost the hydrogenation. This work provides an opportunity to improve the efficiency of industrially important reactions that suffer from poor gas solubility and mass transfer.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202510284-sup-0001-SuppMat.docx55.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science 2013, 342, 1073–1076.
- 2H. Liu, T. Jiang, B. Han, S. Liang, Y. Zhou, Science 2009, 326, 1250–1252.
- 3N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Science 2017, 358, 223–227.
- 4L. Kesavan, R. Tiruvalam, M. H. A. Rahim, M. I. Bin Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely, G. J. Hutchings, Science 2011, 331, 195–199.
- 5A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658.
- 6K. Wang, Y. Wang, M. Pera-Titus, Chem. Soc. Rev. 2024, 53, 11701–11724.
- 7S. E. Davis, M. S. Ide, R. J. Davis, Green Chem. 2012, 15, 17–45.
10.1039/C2GC36441G Google Scholar
- 8E. Brini, C. J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič, K. A. Dill, Chem. Rev. 2017, 117, 12385–12414.
- 9Z. Zou, Y. Shen, X. Zhang, W. Li, C. Chen, D. Fan, H. Zhang, H. Zhao, G. Wang, Adv. Sci. 2024, 11, 2309303.
- 10Purwanto, R. M. Deshpande, R. V. Chaudhari, H. Delmas, J. Chem. Eng. Data 1996, 41, 1414–1417.
- 11P. Kang, S. Zhang, T. J. Meyer, M. Brookhart, Angew. Chem. Int. Ed. 2014, 53, 8709–8713.
- 12A. Mills, J. Wang, D. Ollis, J. Catal. 2006, 243, 1–6.
- 13Q. Wang, Y. Ji, J. Shi, L. Wang, ACS Appl. Mater. Interfaces 2020, 12, 23677–23688.
- 14S. Tian, B. Wang, W. Gong, Z. He, Q. Xu, W. Chen, Q. Zhang, Y. Zhu, J. Yang, Q. Fu, C. Chen, Y. Bu, L. Gu, X. Sun, H. Zhao, D. Wang, Y. Li, Nat. Commun. 2021, 12, 3181.
- 15T.-N. Ye, Z. Xiao, J. Li, Y. Gong, H. Abe, Y. Niwa, M. Sasase, M. Kitano, H. Hosono, Nat. Commun. 2020, 11, 1020.
- 16S. Wang, R. Hu, J. Ren, Y. Lv, L. Song, H. Zhao, X. Jiang, D. Gao, G. Chen, Nat. Commun. 2024, 15, 2076.
- 17S. Källström, R. Leino, Bioorg. Med. Chem. 2008, 16, 601–635.
- 18V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Chem. Rev. 2011, 111, 7157–7259.
- 19D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev. 2012, 112, 2557–2590.
- 20P. Bhutani, G. Joshi, N. Raja, N. Bachhav, P. K. Rajanna, H. Bhutani, A. T. Paul, R. Kumar, J. Med. Chem. 2021, 64, 2339–2381.
- 21H. Adkins, L. F. Kuick, M. Farlow, B. Wojcik, J. Am. Chem. Soc. 1934, 56, 2425–2428.
- 22J. Idrijsones, J. Chem. Soc. 1950, 287, 1392–1397.
- 23F. Chen, A.-E. Surkus, L. He, M.-M. Pohl, J. Radnik, C. Topf, K. Junge, M. Beller, J. Am. Chem. Soc. 2015, 137, 11718–11724.
- 24D. Zhu, H. Jiang, L. Zhang, X. Zheng, H. Fu, M. Yuan, H. Chen, R. Li, ChemCatChem 2014, 6, 2954–2960.
- 25M. M. Dell'Anna, V. F. Capodiferro, M. Mali, D. Manno, P. Cotugno, A. Monopoli, P. Mastrorilli, Appl. Catal. A 2014, 481, 89–95.
- 26D. Ren, L. He, L. Yu, R.-S. Ding, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, J. Am. Chem. Soc. 2012, 134, 17592–17598.
- 27T. W. Bell, A. B. Khasanov, M. G. B. Drew, J. Am. Chem. Soc. 2002, 124, 14092–14103.
- 28Y. Zhang, S. Wei, F. Liu, Y. Du, S. Liu, Y. Ji, T. Yokoi, T. Tatsumi, F.-S. Xiao, Nano Today 2009, 4, 135–142.
- 29Z. Wei, F. Shao, J. Wang, Chin. J. Catal. 2019, 40, 980–1002.
- 30Q. Shen, H. Jin, P. Li, X. Yu, L. Zheng, W. Song, C. Cao, Nano Res. 2022, 15, 5024–5031.
- 31Z. Wei, Y. Chen, J. Wang, D. Su, M. Tang, S. Mao, Y. Wang, ACS Catal. 2016, 6, 5816–5822.
- 32A. Leyva-Pérez, J. R. Cabrero-Antonino, P. Rubio-Marqués, S. I. Al-Resayes, A. Corma, ACS Catal. 2014, 4, 722–731.
- 33X. Chen, Y. Dong, X. Yu, Z. Wang, Y. Liu, J. Liu, S. Yao, Catal. Lett. 2021, 151, 194–211.
- 34R. M. Wexler, E. L. Muetterties, J. Am. Chem. Soc. 1984, 106, 4810–4814.
- 35Y. Wang, H. Yu, Y. He, S. Xiang, X. Qin, L. Yang, J. Chen, Y. Si, J. Zhang, J. Diao, N. Wang, M. Peng, D. Ma, H. Liu, Angew. Chem. Int. Ed. 2025, 64, e202415542.
- 36X. Zhao, G. Zhang, J. Wang, T. Yuan, J. Huang, L. Wang, Y.-N. Liu, ACS Appl. Nano Mater. 2022, 5, 6213–6220.
- 37W. Deng, Y. Wang, S. Zhang, K. M. Gupta, M. J. Hülsey, H. Asakura, L. Liu, Y. Han, E. M. Karp, G. T. Beckham, P. J. Dyson, J. Jiang, T. Tanaka, Y. Wang, N. Yan, Proc. Natl. Acad. Sci. USA 2018, 115, 5093–5098.
- 38M. A. Isaacs, J. Davies-Jones, P. R. Davies, S. Guan, R. Lee, D. J. Morgan, R. Palgrave, Mater. Chem. Front. 2021, 5, 7931–7963.
- 39D. Yao, Y. Wang, Y. Li, A. Li, Z. Zhen, J. Lv, F. Sun, R. Yang, J. Luo, Z. Jiang, Y. Wang, X. Ma, Nat. Commun. 2023, 14, 1123.
- 40Y. Fan, R. Li, B. Wang, X. Feng, X. Du, C. Liu, F. Wang, C. Liu, C. Dong, Y. Ning, R. Mu, Q. Fu, Nat. Commun. 2024, 15, 3046.
- 41Q. Luo, H. Wang, Q. Xiang, Y. Lv, J. Yang, L. Song, X. Cao, L. Wang, F.-S. Xiao, J. Am. Chem. Soc. 2024, 146, 26379–26386.
- 42S. Fan, Z. Yao, W. Cheng, X. Zhou, Y. Xu, X. Qin, S. Yao, X. Liu, J. Wang, X. Li, L. Lin, ACS Catal. 2023, 13, 757–765.
- 43M. Wang, M. Guo, X. Ren, X. Liu, Q. Yang, J. Phys. Chem. C 2021, 125, 15275–15282.
- 44J. Yu, W. Chen, K. Li, C. Zhang, M. Li, F. He, L. Jiang, Y. Li, W. Song, C. Cao, Angew. Chem. Int. Ed. 2022, 61, e202207255.